期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
机械振动信号自适应多尺度非线性动力学特征提取方法研究 被引量:13
1
作者 刘敏 范红波 +2 位作者 张英堂 李志宁 杨望灿 《振动与冲击》 EI CSCD 北大核心 2020年第14期224-232,250,共10页
针对机械振动信号的故障特征提取问题,提出了基于独立变分模态分解与多尺度非线性动力学参数的特征提取方法。①提出频谱循环相干系数选取匹配波形对机械振动信号进行端点延拓后再进行VMD分解得到不同频率尺度的IMF分量;②根据互相关准... 针对机械振动信号的故障特征提取问题,提出了基于独立变分模态分解与多尺度非线性动力学参数的特征提取方法。①提出频谱循环相干系数选取匹配波形对机械振动信号进行端点延拓后再进行VMD分解得到不同频率尺度的IMF分量;②根据互相关准则选取有效的IMF分量进行核独立成分分析,分离出相互独立的有效故障特征频带分量;③计算各独立分量的复合多尺度模糊熵偏均值,并利用正交变换将独立分量正交化后构造多维超体,进而利用多维超体体积定义并计算信号的双测度分形维数,从而获得多尺度非线性动力学特征参数,实现机械故障诊断。仿真和实验结果表明:所提方法可有效抑制VMD分解的端点效应和模态混叠,信号分解效果好,特征参数分类精度高,极大地提高了机械故障诊断准确率。 展开更多
关键词 频谱循环相干系数 端点延拓 独立变分模态分解 复合多尺度模糊熵偏均值 双测度分形维数
在线阅读 下载PDF
基于同步压缩广义S变换的发动机故障诊断 被引量:6
2
作者 刘敏 陈健 +3 位作者 张岩 陈玉昆 范红波 张英堂 《振动.测试与诊断》 EI CSCD 北大核心 2021年第5期984-990,1038,共8页
为提高发动机故障诊断准确率,提出了基于同步压缩广义S变换(synchrosqueezing generalized S-transform,简称SSGST)与中心对称局部二值模式(center-symmetric local binary patterm,简称CSLBP)的故障诊断方法。首先,针对信号时频分析中... 为提高发动机故障诊断准确率,提出了基于同步压缩广义S变换(synchrosqueezing generalized S-transform,简称SSGST)与中心对称局部二值模式(center-symmetric local binary patterm,简称CSLBP)的故障诊断方法。首先,针对信号时频分析中的能量泄露、频谱涂抹、频带混叠和时频分辨率较低的问题,基于同步压缩算法与广义S变换提出了SSGST,对缸盖振动信号进行时频分析得到时频聚集性较高的二维时频图;然后,利用CSLBP提取缸盖振动信号时频图的纹理谱特征,并将其输入交叉验证寻优的核极限学习机对发动机进行故障诊断。实验结果表明,SSGST的能量聚集效果好,时频分辨率高,各频带分布较窄且不存在混叠,能够有效分离出非线性混合信号中的各频带分量;时频图的CSLBP纹理谱特征维数较低,且具有良好的类内聚集性和类间离散性;利用交叉验证寻优的KELM对故障特征进行分类,实现发动机故障诊断,获得了较高的诊断速度和精度。 展开更多
关键词 发动机 时频分析 故障诊断 同步压缩广义S变换 中心对称局部二值模式
在线阅读 下载PDF
基于IVMD与改进KELM的发动机故障诊断 被引量:4
3
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《振动.测试与诊断》 EI CSCD 北大核心 2019年第4期875-883,911,912,共11页
为从含有较强噪声的缸盖振动信号中提取有效的故障特征并进行故障分类,提出了采用独立变分模态分解(independent variational mode decomposition,简称IVMD)与改进核极限学习机(improved kernel extreme learning machine,简称IKELM)的... 为从含有较强噪声的缸盖振动信号中提取有效的故障特征并进行故障分类,提出了采用独立变分模态分解(independent variational mode decomposition,简称IVMD)与改进核极限学习机(improved kernel extreme learning machine,简称IKELM)的发动机故障诊断方法。首先,根据频谱循环相干系数选取匹配波形对信号进行端点延拓,并利用变分模态分解(variational mode decomposition,简称VMD)将延拓后信号分解为一系列固有模态分量,有效抑制了VMD中的端点效应;其次,选取有效分量作为输入观测信号,进行核独立成分分析,进一步分离干扰噪声与有效信号,并消除模态混叠,得到相互独立的有效故障特征频带,进而提取各频带的自回归模型参数、多尺度模糊熵和标准化能量矩构建故障特征向量集;最后,建立基于社会情感优化算法的IKELM分类模型,对故障特征进行分类,实现发动机故障诊断。仿真和实验结果表明,所提出的方法可有效抑制VMD的端点效应,提高信号分解精度,消除噪声干扰并分离出相互独立的有效故障特征频带,增强特征参数辨识度,最终提高发动机故障诊断速度与精度,发动机故障诊断平均准确率达到99.85%。 展开更多
关键词 故障诊断 核极限学习机 社会情感优化算法 频谱循环相干系数 独立变分模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部