时间序列匹配技术广泛应用于车辆操纵一致性评价。针对某型教练车在协同驾驶过程中的动作匹配度评判问题,提出一种基于分段式动态时间弯曲距离的车辆油门操纵动作一致性评估方法。在有效解决教练车协同操控试验过程中样本数据点数量不...时间序列匹配技术广泛应用于车辆操纵一致性评价。针对某型教练车在协同驾驶过程中的动作匹配度评判问题,提出一种基于分段式动态时间弯曲距离的车辆油门操纵动作一致性评估方法。在有效解决教练车协同操控试验过程中样本数据点数量不一致问题的基础上,根据动态弯曲路径的斜率约束条件,将传统的动态时间弯曲距离(Dynamic Time Warping,DTW)矩形搜索区域通过改变路径搜索斜率方式转变为平行四边形搜索区域,以缩小搜索区域面积,从而极大程度地减小计算量。选取4组典型的油门动作曲线组进行50轮迭代实验进行验证,通过分段式DTW方法计算得到实车A、教练车B动作曲线之间的DTW距离矩阵,利用最小离差平方法对A、B两车动作进行聚类对象合并,从而完成油门动作数据的一致性评判。实验结果表明,改进后的动态时间弯曲算法在各油门动作的平均匹配精度可达89.2%,相较于单一的DTW算法提升约3.2%,平均匹配时间约为92.45 s,降低约12.6%,从而验证了分段式DTW算法在油门动作一致性评判的可行性和优越性。展开更多
A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relat...A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relative control circuits to make its function of North seeking possible. Double position calculation is adopted in this method, and by alignment at two sites the azimuth angle can be figured out. Also the orientation and the horizontal shifts of the gyro are simultaneously measured and compensated so as to improve the accuracy of north seeking. The system can automatically seek north when the vehicle is immobile. And the time consumption is no more than 5.5 min. Besides, the system can keep azimuth angle and provide tilt angle and pitch angle of the vehicle.展开更多
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate...This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.展开更多
文摘时间序列匹配技术广泛应用于车辆操纵一致性评价。针对某型教练车在协同驾驶过程中的动作匹配度评判问题,提出一种基于分段式动态时间弯曲距离的车辆油门操纵动作一致性评估方法。在有效解决教练车协同操控试验过程中样本数据点数量不一致问题的基础上,根据动态弯曲路径的斜率约束条件,将传统的动态时间弯曲距离(Dynamic Time Warping,DTW)矩形搜索区域通过改变路径搜索斜率方式转变为平行四边形搜索区域,以缩小搜索区域面积,从而极大程度地减小计算量。选取4组典型的油门动作曲线组进行50轮迭代实验进行验证,通过分段式DTW方法计算得到实车A、教练车B动作曲线之间的DTW距离矩阵,利用最小离差平方法对A、B两车动作进行聚类对象合并,从而完成油门动作数据的一致性评判。实验结果表明,改进后的动态时间弯曲算法在各油门动作的平均匹配精度可达89.2%,相较于单一的DTW算法提升约3.2%,平均匹配时间约为92.45 s,降低约12.6%,从而验证了分段式DTW算法在油门动作一致性评判的可行性和优越性。
文摘A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relative control circuits to make its function of North seeking possible. Double position calculation is adopted in this method, and by alignment at two sites the azimuth angle can be figured out. Also the orientation and the horizontal shifts of the gyro are simultaneously measured and compensated so as to improve the accuracy of north seeking. The system can automatically seek north when the vehicle is immobile. And the time consumption is no more than 5.5 min. Besides, the system can keep azimuth angle and provide tilt angle and pitch angle of the vehicle.
基金the Research and Development department of EODH SA and has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429).
文摘This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.