精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率...精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率,但很难实现一致性很好的精确时间延时,误差较大.基于FPGA具有丰富专用进位连线的资源,对利用现场可编程逻辑器件FPGA中的专用进位连线实现时间内插链,从而实现精密TDC设计,灵活性好,成本低.并对TDC进行了时序仿真,测量的精度可达70ps,取得了一致性很好的精确时间延时.展开更多
针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based L...针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based Local Characteristic-scale Decomposition,PPLCD)。用分段多项式取代LCD中直线连接,且均值曲线插值点由相邻3个同类极值点构成的多项式计算产生。通过仿真信号将PPLCD与LCD对比,结果表明,PPLCD在提高分量正交性、精确性等具有一定优越性;由转子碰摩故障诊断表明该方法的有效性。展开更多
文摘精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率,但很难实现一致性很好的精确时间延时,误差较大.基于FPGA具有丰富专用进位连线的资源,对利用现场可编程逻辑器件FPGA中的专用进位连线实现时间内插链,从而实现精密TDC设计,灵活性好,成本低.并对TDC进行了时序仿真,测量的精度可达70ps,取得了一致性很好的精确时间延时.
文摘针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based Local Characteristic-scale Decomposition,PPLCD)。用分段多项式取代LCD中直线连接,且均值曲线插值点由相邻3个同类极值点构成的多项式计算产生。通过仿真信号将PPLCD与LCD对比,结果表明,PPLCD在提高分量正交性、精确性等具有一定优越性;由转子碰摩故障诊断表明该方法的有效性。