Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which co...Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which contains unsufficient information.To solve this problem,a robust optimization operation method based on information gap decision theory(IGDT) is presented considering the non-probabilistic uncertainties of parameters.By the proposed method the maximum resistance to the disturbance of uncertain parameters is achieved and the optimization strategies with uncertain parameters are presented.Finally,numerical simulation is performed on the modified IEEE-14 bus system.Numerical results show the effectiveness of the proposed approach.展开更多
基金National Natural Science Foundation of China(No.61533010)Science and Technology Commission of Shanghai Municipality,China(No.14ZR1415300)
文摘Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which contains unsufficient information.To solve this problem,a robust optimization operation method based on information gap decision theory(IGDT) is presented considering the non-probabilistic uncertainties of parameters.By the proposed method the maximum resistance to the disturbance of uncertain parameters is achieved and the optimization strategies with uncertain parameters are presented.Finally,numerical simulation is performed on the modified IEEE-14 bus system.Numerical results show the effectiveness of the proposed approach.