期刊文献+
共找到4,611篇文章
< 1 2 231 >
每页显示 20 50 100
基于改进去噪扩散概率模型的风电机组故障样本生成方法 被引量:2
1
作者 孟昱煜 张沣琦 +2 位作者 火久元 常琛 陈峰 《振动与冲击》 北大核心 2025年第4期286-297,共12页
为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran... 为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。 展开更多
关键词 DDPM TRANSFORMER 风电机组 故障诊断 样本生成
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取 被引量:1
2
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断 被引量:1
3
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于MTF-DCGAN的齿轮箱故障诊断方法研究
4
作者 杨敏 孙文磊 +4 位作者 刘志远 钟荟玄 辜英政 王云浩 张宇 《机床与液压》 北大核心 2025年第12期17-24,共8页
为解决齿轮箱故障诊断过程中因样本分布不均衡导致的模型泛化性能不足和识别准确度不高的问题,提出基于MTF-DCGAN和改进EfficientNet网络的故障诊断方法。根据马尔可夫转移场(MTF)图像编码原理将收集的一维振动信号转换成二维可视化图像... 为解决齿轮箱故障诊断过程中因样本分布不均衡导致的模型泛化性能不足和识别准确度不高的问题,提出基于MTF-DCGAN和改进EfficientNet网络的故障诊断方法。根据马尔可夫转移场(MTF)图像编码原理将收集的一维振动信号转换成二维可视化图像,按比例划分训练集和测试集;将训练集数据与随机向量输入至深度卷积生成对抗网络(DCGAN)模型中,交替训练生成器和判别器直至实现纳什均衡,生成与原始样本特征相似的新增样本,以此扩充故障数据集;最后,对EfficientNet的MBConv模块数量和激活函数进行改进,并将原始样本及增广后的样本集导入改进后的EfficientNet中进行特征提取,实现齿轮箱故障的识别与分类。结果表明:所提方法显著提高了样本不均衡情况下齿轮箱故障的诊断准确率,具有维度变换简单和模型参数量小的优势,加快了收敛速率。 展开更多
关键词 故障诊断 马尔可夫转移场 深度卷积生成对抗网络 改进EfficientNet 齿轮箱
在线阅读 下载PDF
多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法
5
作者 王玉静 叶柏宏 +2 位作者 康守强 刘连胜 孙宇林 《仪器仪表学报》 北大核心 2025年第6期317-329,共13页
针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一... 针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一维信号转换为二维图像,构建时频图数据集;利用改进的数据增强方法对不平衡数据集进行均衡处理;引入有效的通道注意力机制,并通过可学习的权重加权残差分支的输出,以增强模型对不同输入信号残差信息的适应性和对数据关键特征的提取能力;通过改进的多模态变分自编码器挖掘多源信号之间的互补信息进行特征融合,并采用焦点损失函数作为训练损失函数,使模型能够更关注错分频率较高的类别样本,构建多用户个性化本地模型;服务器端聚合用户端本地模型参数并更新全局模型,通过联邦学习保障用户端本地的孤岛隐私数据,从而对多源不平衡数据下谐波减速器进行故障诊断。通过搭建谐波减速器信号采集实验平台进行验证,所提方法能够有效提取谐波减速器多源不平衡数据的特征并实现信息融合,平均故障诊断准确率为98.8%,性能优于所对比的方法。 展开更多
关键词 数据不平衡 多源信息融合 联邦学习 谐波减速器 故障诊断
原文传递
结合加权对抗学习的跨域自适应融合诊断方法
6
作者 佘博 秦奋起 +2 位作者 石章松 梁伟阁 王旋 《振动工程学报》 北大核心 2025年第4期877-888,共12页
针对目标域与源域标签空间交叉的跨域诊断,即目标域和源域均存在对方领域没有的样本类型这一典型开放域诊断问题,提出一种结合加权对抗学习的跨域自适应融合诊断方法。利用熵可以表征样本已知类型和未知类型的特性,引入两个结构相同的... 针对目标域与源域标签空间交叉的跨域诊断,即目标域和源域均存在对方领域没有的样本类型这一典型开放域诊断问题,提出一种结合加权对抗学习的跨域自适应融合诊断方法。利用熵可以表征样本已知类型和未知类型的特性,引入两个结构相同的卷积神经网络进行基于熵的加权对抗性训练,以提取域不变特征增强辨识已知类型的能力,另构建源域和目标域样本输出的二元交叉方案用以隔离未知类型,此外,将两个卷积神经网络的全连接层隐藏特征作为两个标签传递模型的输入,采用投票法则融合三个诊断模型的概率输出。采用变工况的机械传动部件失效实验台数据和自吸式离心泵损伤数据进行分析验证,实验结果表明:所提跨域自适应融合诊断方法能更准确地辨识出目标域数据中已知的故障类型和未知的故障类型。 展开更多
关键词 故障诊断 开放域 跨域 对抗学习 领域自适应
在线阅读 下载PDF
小样本下基于原型域增强的Meta-DAE故障诊断
7
作者 马萍 梁城 +2 位作者 王聪 李新凯 张宏立 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期62-73,共12页
滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中。在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义。但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,... 滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中。在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义。但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,导致故障诊断的准确率低。因此,针对噪声干扰和变工况下的小样本滚动轴承故障诊断问题,该文提出了一种基于原型域增强的元学习去噪模型(Meta-DAE)。首先,构造基于时频图的小样本故障样本集,引入深度卷积生成对抗网络并对数据进行预处理,生成相似分布的伪样本集;然后,将故障样本集输入Meta-DAE模型进行自适应特征提取,Meta-DAE模型采用原型域增强策略,使同类别原型点在嵌入空间中凝聚更紧密;同时,构建了具有降噪性能的编码器,设计了基于原型域增强和去噪的目标函数,通过在小样本下进行模型微调,以提高小样本下模型的噪声鲁棒性和分类准确率。噪声及变工况下小样本故障诊断实验结果表明,相比于其他模型,所提模型在-8dB强噪声干扰下,仅用10个样本微调模型,分类准确率提高了35.78~57.25个百分点,具有较强的噪声鲁棒性。 展开更多
关键词 小样本 故障诊断 元学习 原型域增强 去噪自编码器
在线阅读 下载PDF
优化FEEMD与相似度量的滚动轴承故障特征提取
8
作者 马军 李祥 +1 位作者 秦娅 熊新 《兵器装备工程学报》 北大核心 2025年第3期252-266,共15页
针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(n... 针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(northern goshawk optimization,NGO)确定FEEMD的模型参数后,利用优化后的FEEMD将滚动轴承振动信号分解为多个本征模态函数分量和残余项,融合形态波动一致性偏移距离(morphology fluctuation conformance deviation distance,MFCDD)指标筛选有效分量进行重构,最后对重构信号进行Hilbert包络解调,完成滚动轴承故障特征提取。试验结果表明,所提方法相比变分模态分解方法、峭度分量选取方法、改进的完备集合经验模态分解联合豪斯多夫距离与峭度值方法,信噪比分别平均提升了1.75、12.2639、2.0605 dB,均方根误差分别降低了0.0078、0.0430、0.0656,能够更加清晰、全面地提取出故障特征频率及其倍频。 展开更多
关键词 滚动轴承 故障特征提取 集合经验模态分解 相似性 北方苍鹰算法
在线阅读 下载PDF
基于符号变量矩阵的改进样本熵算法
9
作者 李彦阳 罗伟 《科学技术与工程》 北大核心 2025年第5期1913-1919,共7页
针对样本熵算法在相空间重构过程中存在冗余运算的问题,通过构建符号变量矩阵的方法,对样本熵算法的相空间重构过程进行替换,建立改进的样本熵算法。白噪声和粉噪声仿真信号分析表明,改进的样本熵算法能有效提取信号的特征,并且具有较... 针对样本熵算法在相空间重构过程中存在冗余运算的问题,通过构建符号变量矩阵的方法,对样本熵算法的相空间重构过程进行替换,建立改进的样本熵算法。白噪声和粉噪声仿真信号分析表明,改进的样本熵算法能有效提取信号的特征,并且具有较高计算效率。以往复压缩机轴承间隙故障为研究对象,应用改进的样本熵算法对其进行特征提取,并与样本熵进行对比,该方法特征提取结果与样本熵算法保持高度一致,算法的计算效率远高于样本熵算法。 展开更多
关键词 样本熵 改进的样本熵 计算效率 特征提取 往复压缩机
在线阅读 下载PDF
基于CFasterVit-TFAM与COS-UMAP模型的滚动轴承故障诊断
10
作者 戚晓利 崔德海 +4 位作者 王志文 赵方祥 王兆俊 毛俊懿 杨文好 《振动与冲击》 北大核心 2025年第10期287-300,共14页
针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion at... 针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。 展开更多
关键词 故障诊断 滚动轴承 FasterVit 注意力机制 均匀流形逼近与投影 类距均值标准差损失函数
在线阅读 下载PDF
基于SConvNeXt-ECMS与DBO-RELM模型的滚动轴承故障诊断方法
11
作者 戚晓利 毛俊懿 +3 位作者 王兆俊 王志文 崔德海 赵方祥 《航空动力学报》 北大核心 2025年第5期460-474,共15页
针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与D... 针对现有基于深度学习的滚动轴承故障诊断方法存在准确度不高、泛化性较差的缺点,提出了一种基于SConvNeXt-ECMS(the ConvNeXt network based on shuffled convolution-efficient channel and multi-scale spatial attention module)与DBO-RELM(dung beetleoptimizer regularized extreme learning machine)的滚动轴承故障诊断模型。将ECMS注意力机制与分流卷积模块融入ConvNeXt网络,提升ConvNeXt网络的特征提取能力;使用蜣螂优化算法完成参数寻优后的RELM替换网络原有分类层,提升网络对相近特征的分辨能力;利用哈尔滨工业大学航空轴承故障数据集仿真实验,验证所提分流卷积对ConvNeXt网络的提升效果;使用帕德博恩大学数据集进行滚动轴承混合故障诊断实验,验证所提SConvNeXt-ECMS与DBO-RELM模型的分类效果。仿真实验结果表明:所提SConvNeXt网络在航空轴承故障分类任务中,准确率可达100%,优于其他现有网络;帕德博恩大学滚动轴承混合故障诊断实验表明,所提ECMS注意力机制以及DBO-RELM方法均对原网络的性能有进一步的提升,新模型对滚动轴承混合故障的诊断准确率最高可达99.94%,相较于其他现有的滚动轴承故障诊断模型,均具有更高的故障诊断准确率和更强的泛化能力。 展开更多
关键词 故障诊断 滚动轴承 分流卷积 注意力机制 正则化极限学习机(RELM) 蜣螂优化算法(DBO)
原文传递
基于掩码对比学习的半监督齿轮箱变工况故障诊断
12
作者 张慧云 左芳君 +1 位作者 李航 余熹 《机械强度》 北大核心 2025年第6期72-81,共10页
针对实际工程中变工况齿轮箱故障样本标注困难且数据分布差异显著,导致故障诊断模型精度降低的问题,提出了一种基于掩码对比学习的半监督齿轮箱变工况故障诊断方法。首先,利用随机掩码隐藏无标签数据集中部分信息,为每个无标签样本生成... 针对实际工程中变工况齿轮箱故障样本标注困难且数据分布差异显著,导致故障诊断模型精度降低的问题,提出了一种基于掩码对比学习的半监督齿轮箱变工况故障诊断方法。首先,利用随机掩码隐藏无标签数据集中部分信息,为每个无标签样本生成两个不同掩码实例;其次,采用动态卷积神经网络对掩码实例动态加权聚合,实现对不同掩码实例判别性特征建模;然后,构建对比学习框架,以最大化不同掩码实例特征间的相似性为优化目标,通过增强掩码视角实例对的特征表示一致性,降低模型对标签的依赖;最后,在微调阶段引入域条件特征校正策略生成目标域特征修正量,并根据最小化域间特征分布差异性度量对齐源域特征和目标域修正特征,显式地减少由于工况变化引起的域间分布差异。通过齿轮箱变工况故障数据集进行验证,证明了所提方法的有效性。 展开更多
关键词 齿轮箱 变工况 故障诊断 对比学习 半监督
在线阅读 下载PDF
基于加权子域自适应对抗网络的齿轮箱变工况故障诊断
13
作者 张慧云 左芳君 +1 位作者 余熹 杨婷 《机械强度》 北大核心 2025年第3期96-103,共8页
实际工程中齿轮箱受复杂多变的运行环境影响,导致单一振动信号难以准确有效地表征齿轮箱在不同工况下的故障信息。为此,提出了一种基于加权子域自适应对抗网络的齿轮箱变工况故障诊断方法。首先,采用多源异构信号融合策略,将振动信号时... 实际工程中齿轮箱受复杂多变的运行环境影响,导致单一振动信号难以准确有效地表征齿轮箱在不同工况下的故障信息。为此,提出了一种基于加权子域自适应对抗网络的齿轮箱变工况故障诊断方法。首先,采用多源异构信号融合策略,将振动信号时频图、电流信号格拉姆矩阵和红外热力图转换为多通道数据集,从不同视角描述齿轮箱运行状态;其次,构建嵌入高效通道注意力机制(Efficient Channel Attention,ECA)的自校正卷积神经网络(Self-calibrated Convolutions Network,SCNet)作为特征提取器,动态调整多源异构信号间相互作用和依赖关系,平衡源域和目标域的多源异构数据间尺度差异;再次,在特征提取器和域判别器进行对抗训练的同时,引入最大均值差异(Maximum Mean Discrepancy,MMD)和线性判别分析(Linear Discriminant Analysis,LDA)衡量当前跨域任务特征表示的域对齐程度及诊断任务决策边界,并构造动态平衡因子实时调整域对齐损失和类分辨性损失,有效地对齐源域和目标域每个类空间。最后,通过采集的齿轮箱变工况故障数据集进行验证。结果表明,所提方法在不同工况的诊断精度均达到95%以上,证明了所提方法的可行性和有效性。 展开更多
关键词 齿轮箱 不同工况 故障诊断 数据融合 域自适应
在线阅读 下载PDF
基于深度学习的滚动轴承剩余寿命预测方法
14
作者 杨秀芳 田亮 +1 位作者 张英鸽 赵宇凡 《西安理工大学学报》 北大核心 2025年第3期370-380,共11页
机械装备正在朝着高速、高精、高效方向发展,建立可靠的剩余寿命预测和健康监测是保证装备安全运行的必需途径。深度学习理论具有强大的建模和表征能力逐渐成为机械设备故障诊断领域的研究热点。结合机械监测大数据的特点与深度学习的优... 机械装备正在朝着高速、高精、高效方向发展,建立可靠的剩余寿命预测和健康监测是保证装备安全运行的必需途径。深度学习理论具有强大的建模和表征能力逐渐成为机械设备故障诊断领域的研究热点。结合机械监测大数据的特点与深度学习的优势,提出了一种新的滚动轴承剩余寿命预测和健康监测方法,该方法通过定义的退化特征选取指标,从全特征参数中选取了12个退化特征参量,构建了退化特征集,并用退化指标得分最高的总谱值特征归一化为寿命值标签,训练长短期记忆(long short-term memory,LSTM)神经网络滚动轴承剩余寿命预测模型,其优势在于摆脱了对大量信号处理技术和机械累积损伤可靠性模型的依赖,实现对滚动轴承剩余寿命的智能预测。通过对多种工况的滚动轴承剩余寿命进行预测,结果表明,本文的退化特征数据样本+LSTM滚动轴承剩余寿命模型对多种工况的滚动轴承剩余寿命预测方法可行,寿命预测效率高、结果可靠,预测模型的泛化能力强,具有很强的工程应用参考价值。 展开更多
关键词 滚动轴承 剩余寿命预测 LSTM 退化特征
在线阅读 下载PDF
基于高效样本熵算法的滚动轴承故障诊断研究
15
作者 李彦阳 罗伟 《计算机仿真》 2025年第9期269-273,573,共6页
为提高滚动轴承故障诊断识别准确率和计算效率,提出了一种基于改进SSA-VMD和高效样本熵的滚动轴承故障特征提取方法,并结合SVM进行诊断识别。首先,基于VMD算法中的模态数K和惩罚因子α是影响分解效果的两个关键因素,采用改进的SSA-VMD算... 为提高滚动轴承故障诊断识别准确率和计算效率,提出了一种基于改进SSA-VMD和高效样本熵的滚动轴承故障特征提取方法,并结合SVM进行诊断识别。首先,基于VMD算法中的模态数K和惩罚因子α是影响分解效果的两个关键因素,采用改进的SSA-VMD算法,以包络熵与峭度值比值的极小值为适应度值对VMD参数进行优化,并利用优化后的VMD进行信号分解及信号重构。其次,为进一步缩短特征提取的计算时间,引进结合率的思想,对统计不同维度下向量间距离小于阀值的向量个数时存在的重复计算步骤进行合并简化,得到一种高效的样本熵算法,利用高效样本熵对重构的信号构建特征向量。实验验证表明,上述方法不但提高了滚动轴承的故障诊断率,并且提高了故障诊断过程的计算效率。 展开更多
关键词 滚动轴承 高效样本熵 信号重构 故障诊断
在线阅读 下载PDF
电动机故障诊断联邦学习模型研究及技术应用
16
作者 周奇才 黄至恺 +2 位作者 钟小勇 卢浩 邱彦杰 《起重运输机械》 2025年第1期78-84,共7页
文中提出了一种基于深度学习以及联邦学习的电动机故障诊断模型。使用Transformer模型对电动机的运行数据进行分析以及故障诊断分类,在此基础上使用FedProx联邦学习算法,在多个客户端上使用不同的数据训练模型,并将训练后的模型上传到... 文中提出了一种基于深度学习以及联邦学习的电动机故障诊断模型。使用Transformer模型对电动机的运行数据进行分析以及故障诊断分类,在此基础上使用FedProx联邦学习算法,在多个客户端上使用不同的数据训练模型,并将训练后的模型上传到中央服务器进行聚合,使用聚合后的模型对设备进行故障诊断。实验结果表明,所提出的模型具有良好的性能,对数据的故障分类准确率满足电动机故障诊断的要求,同时联邦学习的方法有助于模型获得更多的数据特征,使得模型可以更好地进行故障诊断,同时对保护数据隐私也有一定作用。 展开更多
关键词 电动机 故障诊断 Transformer模型 联邦学习 联邦正则算法
在线阅读 下载PDF
基于在线软标签的元学习轴承故障诊断方法
17
作者 陶洁 陈贺文 +1 位作者 赵志磊 邱海文 《湖南工程学院学报(自然科学版)》 2025年第1期42-49,共8页
在极端小样本下,元学习故障诊断模型容易陷入过拟合,导致轴承故障诊断的准确率下降.基于此,提出一种基于在线软标签的元学习轴承故障诊断模型(Online Soft Label Metalearning,OSLM).首先将轴承原始振动信号作为卷积神经网络的输入;然... 在极端小样本下,元学习故障诊断模型容易陷入过拟合,导致轴承故障诊断的准确率下降.基于此,提出一种基于在线软标签的元学习轴承故障诊断模型(Online Soft Label Metalearning,OSLM).首先将轴承原始振动信号作为卷积神经网络的输入;然后在元学习网络框架下搭建卷积神经网络,以多任务的训练方式优化模型;最后,利用在线软标签算法统计模型预测的信息更新软标签,使用软标签指导神经网络训练.并将本文所提方法,在公开轴承数据集上进行试验,对跨工况条件和跨部件下的滚动轴承进行故障诊断实验.实验结果表明,本文所提方法相较其他方法具有更高的识别精度、更强的鲁棒性以及泛化性. 展开更多
关键词 小样本学习 元学习 在线软标签算法 轴承故障诊断
在线阅读 下载PDF
基于CAGNet网络的行星齿轮箱故障诊断
18
作者 郝中波 邹梦婷 李晓南 《昆明冶金高等专科学校学报》 2025年第1期95-103,共9页
针对实际工程中行星齿轮箱故障数据难以获取,导致传统的机器学习算法诊断精度不高的问题,提出一种基于CAGNet(Conv Attention Gear Net)网络的行星齿轮箱故障诊断方法。首先,利用建立的唯象模型得到不同故障下的振动仿真信号,通过对仿... 针对实际工程中行星齿轮箱故障数据难以获取,导致传统的机器学习算法诊断精度不高的问题,提出一种基于CAGNet(Conv Attention Gear Net)网络的行星齿轮箱故障诊断方法。首先,利用建立的唯象模型得到不同故障下的振动仿真信号,通过对仿真信号进行分段截取,构建网络训练数据集,以解决行星齿轮箱训练样本不足的问题;其次,为了提升网络训练效率和收敛速度,先利用2个卷积层进行有效的特征提取和信息传递,加速网络训练过程,并将卷积注意力机制嵌入残差网络中,提取信号的深层特征,利用筛选特征,建立CAGNet网络模型,提高了模型诊断准确率;最后,基于仿真和实验数据完成所提模型与残差网络(ResNet)、深度残差收缩网络(DRSN)和MSACNN网络的对比分析,其诊断精度分别提高了1.5%、2.5%、4.5%。 展开更多
关键词 行星齿轮箱 残差网络 注意力机制 故障诊断
在线阅读 下载PDF
复合多尺度包络模糊熵在滚动轴承故障诊断中的应用 被引量:2
19
作者 李姜宏 郑近德 +2 位作者 潘海洋 程健 童靳于 《振动与冲击》 北大核心 2025年第9期274-281,共8页
模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE... 模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE)作为新的复杂性度量指标。进一步利用复合粗粒化的方式对时间序列的包络信号进行复合多尺度处理,提出了复合多尺度包络模糊熵(composite multi-scale envelope fuzzy entropy, CMEFE),旨在全面揭示信号的故障特征。此外,通过仿真信号验证了CMEFE能够区分不同类型的模拟信号,对比其他非线性动力学方法,结果表明提出的方法对于不同模拟信号的区分效果更为显著。在此基础上,提出一种基于复合多尺度包络模糊熵与萤火虫优化支持向量机的滚动轴承故障诊断方法。与现有方法进行对比,验证了该方法的可行性与优越性。 展开更多
关键词 模糊熵(FE) 包络模糊熵(EFE) 多尺度模糊熵 复合多尺度包络模糊熵(CMEFE) 萤火虫优化支持向量机 滚动轴承故障诊断
在线阅读 下载PDF
基于连续小波变换的CNN—SVM农机滚动轴承故障诊断 被引量:2
20
作者 沈伟杰 肖茂华 +1 位作者 宋新民 项腾飞 《中国农机化学报》 北大核心 2025年第4期254-264,共11页
针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承... 针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承振动信号进行多尺度时频分析,为后续故障诊断提供更详细的特征;然后,将提取到的时频图作为输入,利用CNN深层次学习故障特征信息;最后,采用SVM对输出结果进行分类,以实现精确的故障类型识别。与BPNN、SVM、CWT—CNN以及CWT—ResNet等方法比较,试验结果表明,CWT—CNN—SVM故障诊断准确率最高,单次准确率达到100%,5次重复试验准确率为99.62%。CWT—CNN—SVM在处理复杂的滚动轴承故障诊断问题时,不仅诊断准确,同时展现出深度学习与故障诊断相结合的优势,能进一步提升小数据集的性能。所提出的CWT—CNN—SVM方法对于提升农机滚动轴承故障诊断性能,具有一定的理论价值和实际应用前景。 展开更多
关键词 故障诊断 农机 滚动轴承 连续小波变换 卷积神经网络 支持向量机
在线阅读 下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部