通过改变激光粉末床熔融(laser powder bed fusion,LPBF)的扫描速度研究IN738LC合金组织演化及各向异性机制,采用光学显微镜(optical microscopy,OM)及扫描电镜(scanning electron microscopy,SEM)对组织形貌特征进行表征分析,通过X射...通过改变激光粉末床熔融(laser powder bed fusion,LPBF)的扫描速度研究IN738LC合金组织演化及各向异性机制,采用光学显微镜(optical microscopy,OM)及扫描电镜(scanning electron microscopy,SEM)对组织形貌特征进行表征分析,通过X射线衍射(X-ray diffraction,XRD)对其织构性进行测试,使用显微硬度仪对显微硬度及各向异性进行评价.结果表明,随着扫描速度从800 mm/s提高到1600 mm/s,晶粒尺寸得到显著细化,且晶粒长轴取向由低扫描速度下沿建造方向择优,转变为高扫描速度下的沿熔池边界法线方向择优.这是因为低扫描速度下高熔池重熔率导致更多枝晶沿建造方向外延择优生长.这种沿建造方向的强择优生长同时导致(200)面沿建造方向择优的织构性,且这种织构强度随扫描速度增加而降低.这种(200)面沿建造方向择优织构还导致水平截面软轴居多,进而导致水平显微硬度低于侧界面显微硬度的各向异性.展开更多
激光粉末床熔融(laser powder bed fusion,LPBF)增材制造技术广泛用于航空航天领域复杂结构的镍基高温合金零件的一体化制造,但是其粗糙度问题限制了该项技术的应用.基于此,通过采用双轮廓扫描策略优化表面成形质量,并研究轮廓参数的热...激光粉末床熔融(laser powder bed fusion,LPBF)增材制造技术广泛用于航空航天领域复杂结构的镍基高温合金零件的一体化制造,但是其粗糙度问题限制了该项技术的应用.基于此,通过采用双轮廓扫描策略优化表面成形质量,并研究轮廓参数的热输入对表面成形质量及微观组织、显微硬度的影响.结果表明,上表面粗糙度Sa随上轮廓参数的热输入增加逐渐降低,并在功率为220 W,扫描速度为0.1 m/s时粗糙度Sa达到3.1μm最优值,但在高热输入时近表面会形成匙孔诱发的孔洞缺陷,因此表面粗糙度优化需折衷考虑近表面孔洞缺陷;此外,双轮廓参数的热输入与下表面粗糙度之间没有明显的相关性.不同轮廓参数下制备的样品下表面粗糙度Sa在13.5~16.5μm之间;轮廓参数的单向扫描策略导致了粗大柱状晶粒的形成,并且随着热输入的增加,上层轮廓层的显微硬度显著增加。展开更多
文摘通过改变激光粉末床熔融(laser powder bed fusion,LPBF)的扫描速度研究IN738LC合金组织演化及各向异性机制,采用光学显微镜(optical microscopy,OM)及扫描电镜(scanning electron microscopy,SEM)对组织形貌特征进行表征分析,通过X射线衍射(X-ray diffraction,XRD)对其织构性进行测试,使用显微硬度仪对显微硬度及各向异性进行评价.结果表明,随着扫描速度从800 mm/s提高到1600 mm/s,晶粒尺寸得到显著细化,且晶粒长轴取向由低扫描速度下沿建造方向择优,转变为高扫描速度下的沿熔池边界法线方向择优.这是因为低扫描速度下高熔池重熔率导致更多枝晶沿建造方向外延择优生长.这种沿建造方向的强择优生长同时导致(200)面沿建造方向择优的织构性,且这种织构强度随扫描速度增加而降低.这种(200)面沿建造方向择优织构还导致水平截面软轴居多,进而导致水平显微硬度低于侧界面显微硬度的各向异性.