Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the eff...Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.展开更多
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金National Key Research and Development Program of China(2023YFB4606400)Supported by Longmen Laboratory Frontier Exploration Topics(LMQYTSKT003)。
文摘Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.