To address the increasing demand for corrosion-resistant shaft components,a bi-metallic composite shaft comprising carbon steel,which is known for its high thermal strength,and stainless cladding,which offers excellen...To address the increasing demand for corrosion-resistant shaft components,a bi-metallic composite shaft comprising carbon steel,which is known for its high thermal strength,and stainless cladding,which offers excellent corrosion resistance,was introduced.A novel method for manufacturing these composite shaft parts using cross-wedge rolling(CWR)was proposed and explored.Thermal simulation experiments,CWR forming trials and finite element analysis were conducted to examine the coordinated deformation during the CWR process.The results revealed a downhill diffusion pattern of elements from higher to lower-concentration areas,forming a smooth and uniform concentration gradient.When the cladding thickness(CT)ranged from 3 to 4 mm,the trajectories of the points on both the cladding material and the substrate coincided,indicating strong bonding at the transitional interface of the composite shaft.Conversely,with a CT of 5 mm,coordinated deformation between the substrate and cladding material was not achieved.Shear strength tests demonstrated a gradual decrease in strength with increasing CT.The microscopic morphology of the interface showed that the metal grains near both sides of the interface were refined,and the binding interface displayed a slightly curved shape.A viable method was provided for producing high-performance corrosion-resistant composite shaft components using CWR technology.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFE0123700)the National Natural Science Foundation of China(No.52205329)the Beijing Natural Science Foundation(Nos.L212024 and L201010).
文摘To address the increasing demand for corrosion-resistant shaft components,a bi-metallic composite shaft comprising carbon steel,which is known for its high thermal strength,and stainless cladding,which offers excellent corrosion resistance,was introduced.A novel method for manufacturing these composite shaft parts using cross-wedge rolling(CWR)was proposed and explored.Thermal simulation experiments,CWR forming trials and finite element analysis were conducted to examine the coordinated deformation during the CWR process.The results revealed a downhill diffusion pattern of elements from higher to lower-concentration areas,forming a smooth and uniform concentration gradient.When the cladding thickness(CT)ranged from 3 to 4 mm,the trajectories of the points on both the cladding material and the substrate coincided,indicating strong bonding at the transitional interface of the composite shaft.Conversely,with a CT of 5 mm,coordinated deformation between the substrate and cladding material was not achieved.Shear strength tests demonstrated a gradual decrease in strength with increasing CT.The microscopic morphology of the interface showed that the metal grains near both sides of the interface were refined,and the binding interface displayed a slightly curved shape.A viable method was provided for producing high-performance corrosion-resistant composite shaft components using CWR technology.