Constructing a photoanode with both high dark-state protection performance and high stability remains a top priority for photoelectrochemical cathodic protection technology,especially in a marine environment(dark-stat...Constructing a photoanode with both high dark-state protection performance and high stability remains a top priority for photoelectrochemical cathodic protection technology,especially in a marine environment(dark-state or rainy conditions)without hole scavenging agents.In this work,we developed a class of energy-storage quasi-planar heterojunctions(WO_(3)-Nb_(2)O_(5)-ZnIn_(2)S_(4))with directional paths(low onset potential and well-matched energy band)and embedded morphology.The co-design of embedded and directional paths reduces the carrier transport energy barrier at the composite interface,and increases the interface contact area,thereby achieving highly stable and sensitive dark-state energy storage and photoelectrochemical cathodic protection performance in 3.5 wt.%NaCl solution without hole scavenging agent(Dark-state energy storage efficiency increased by 43%.For carbon steel,the performance retention rate is 99.6%after 500 cycles,the performance retention rate is 89%after 5000 s).展开更多
Photogenerated electrons generated by photoexcitation of semiconductor materials can be transferred to metal materials to provide corrosion protection.Conversely,the accumulation of photogenerated holes accelerates th...Photogenerated electrons generated by photoexcitation of semiconductor materials can be transferred to metal materials to provide corrosion protection.Conversely,the accumulation of photogenerated holes accelerates the recombination of photogenerated carriers.Consequently,the development of efficient strategies for the consumption of photogenerated holes has emerged as a critical challenge in the field of photoelectrochemical cathodic protection technology.In this paper,TiO_(2)/TiOBr heterojunction photoelectrode was firstly prepared by simple hydrothermal method,and NiCo-LDH(layered double hydroxide)was further deposited on TiO_(2)/TiOBr to obtain TiO_(2)/TiOBr/NiCo-LDH photoelectrode.The construction of a heterojunction between TiO_(2)and TiOBr promotes the separation of photogenerated carriers,while the deposition of NiCo-LDH reduces the overpotential for hole oxidation.Hence,the photoinduced potential drop and photoinduced current density of TiO_(2)/TiOBr/NiCo-LDH photoelectrode coupled with 316 L stainless steel in 3.5 wt%NaCl under simulated sunlight irradiation can be up to 303 mV and 25.87μA/cm^(2),respectively.This study provides a new idea for the design and preparation of TiO_(2)-based photoelectrodes with excellent photocathodic protection under visible light.展开更多
基金financially supported by the Henan Province Key R&D and Promotion Project(Technology Research)(NO.232102230011)the Fundamental Research Fund of Henan Academy of Sciences(NO.230618026)+1 种基金Joint Fund of Henan Province Science and Technology R&D Program(NO.225200810120)High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(NOs.231818022 and 232018001).
文摘Constructing a photoanode with both high dark-state protection performance and high stability remains a top priority for photoelectrochemical cathodic protection technology,especially in a marine environment(dark-state or rainy conditions)without hole scavenging agents.In this work,we developed a class of energy-storage quasi-planar heterojunctions(WO_(3)-Nb_(2)O_(5)-ZnIn_(2)S_(4))with directional paths(low onset potential and well-matched energy band)and embedded morphology.The co-design of embedded and directional paths reduces the carrier transport energy barrier at the composite interface,and increases the interface contact area,thereby achieving highly stable and sensitive dark-state energy storage and photoelectrochemical cathodic protection performance in 3.5 wt.%NaCl solution without hole scavenging agent(Dark-state energy storage efficiency increased by 43%.For carbon steel,the performance retention rate is 99.6%after 500 cycles,the performance retention rate is 89%after 5000 s).
基金financially supported by the Natural Science Foundation of Shandong(No.ZR2023QD152)the National Natural Science Foundation of China(No.42476212).
文摘Photogenerated electrons generated by photoexcitation of semiconductor materials can be transferred to metal materials to provide corrosion protection.Conversely,the accumulation of photogenerated holes accelerates the recombination of photogenerated carriers.Consequently,the development of efficient strategies for the consumption of photogenerated holes has emerged as a critical challenge in the field of photoelectrochemical cathodic protection technology.In this paper,TiO_(2)/TiOBr heterojunction photoelectrode was firstly prepared by simple hydrothermal method,and NiCo-LDH(layered double hydroxide)was further deposited on TiO_(2)/TiOBr to obtain TiO_(2)/TiOBr/NiCo-LDH photoelectrode.The construction of a heterojunction between TiO_(2)and TiOBr promotes the separation of photogenerated carriers,while the deposition of NiCo-LDH reduces the overpotential for hole oxidation.Hence,the photoinduced potential drop and photoinduced current density of TiO_(2)/TiOBr/NiCo-LDH photoelectrode coupled with 316 L stainless steel in 3.5 wt%NaCl under simulated sunlight irradiation can be up to 303 mV and 25.87μA/cm^(2),respectively.This study provides a new idea for the design and preparation of TiO_(2)-based photoelectrodes with excellent photocathodic protection under visible light.