Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was ad...Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...展开更多
基金Project supported by the National Basic Research Program of China (2006CB601101)the National High Technology Research and Development Program of China (2007AA03Z440)the National Natural Science Foundation of China (50731007)
文摘Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...