Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemica...Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.展开更多
Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta...The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.展开更多
Gas-produced water is an accompanying wastewater in the natural gas extraction process,and it is a potential liquid lithium resource that contains a considerable amount of lithium.This study investigated the feasibili...Gas-produced water is an accompanying wastewater in the natural gas extraction process,and it is a potential liquid lithium resource that contains a considerable amount of lithium.This study investigated the feasibility of using manganese-based ion sieves to adsorb and extract lithium from gas-produced water.And we focused on the applicability of two different granulation methods,extrusion and droplet,in gas-produced water systems.Two types of H_(1.33)Mn_(1.67)O_(4) particles were prepared by the extrusion method(EHMO)and the droplet method(DHMO).The porosity of DHMO was much higher than that of EHMO,and the adsorption performance of DHMO increased with the decrease of binder concentration.DHMO prepared with a binder concentration of 0.14 g·ml^(-1)exhibited the best adsorption performance in gas-produced water,and the Li^(+)adsorption capacity could reach 25.14 mg·g^(-1).In gas-produced water,the adsorption equilibrium of DHMO only took 9 h,and the adsorption process conformed to the Langmuir model and pseudo-second-order kinetic model.The pore diffusion model(PDM)could well describe its adsorption process.Besides,DHMO showed a great selectivity to Li^(+),and the selectivity order of DHMO in gas-produced water was Li^(+)>Ba^(2+)>>Mg^(2+),Ca^(2+),Sr^(2+)>>Na^(+)>>K^(+).After 20 cycles,the Li^(+)adsorption capacity was still higher than 17.30 mg·g^(-1),and the rate of manganese dissolution was less than 1%.展开更多
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo...Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.展开更多
金属锂具有高理论比容量和低氧化还原电位,被认为是高能量密度二次电池最理想的负极材料之一,但其在循环过程中的枝晶生长和体积变化易造成电池失效和安全隐患.以孔径为 5 μm 左右的自制三维多孔铜为基底,在其表面电沉积锌层(3D Cu@Zn)...金属锂具有高理论比容量和低氧化还原电位,被认为是高能量密度二次电池最理想的负极材料之一,但其在循环过程中的枝晶生长和体积变化易造成电池失效和安全隐患.以孔径为 5 μm 左右的自制三维多孔铜为基底,在其表面电沉积锌层(3D Cu@Zn),作为金属锂沉积的集流体,构筑无枝晶锂金属电极.三维多孔铜的孔结构稳定,孔径大小适宜,可有效降低局部电流密度和缓解体积变化.锌镀层可降低锂金属的形核过电位,诱导锂的均匀沉积,有效抑制锂枝晶生长.以 3D Cu@Zn 为集流体,锂沉积面积容量为 4 m Ah·cm^(-2),电极表面仍无枝晶出现,经过锂剥离后表面仍然光滑;而铜箔上沉积的锂显示明显的枝晶和不均匀性,3D Cu 上沉积的锂显示局部不均匀性和一定量枝晶.在电流密度为 0.5 和 1m A·cm^(-2),面积容量为 1 m Ah·cm^(-2)条件下,Li||3D Cu@Zn 半电池获得了稳定的库伦效率;在 2 m A·cm^(-2)的高电流密度和 1 m Ah·cm^(-2)的面积容量条件下,Li||3D Cu@Zn@Li 对称电池可稳定循环 700 h 以上;以 3D Cu@Zn@Li 为负极,Li Fe PO_(4)为正极的全电池,在 1 C 倍率下,经过 150 次循环后仍保持 88 m Ah·g^(-1)的容量,均明显优于 Cu 片和 3D Cu 作为集流体的锂金属电极.展开更多
LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysi...LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysis was applied to investigating the mixture of transition metal acetates. X-ray powder diffraction and charge–discharge test were adopted to characterize the as-prepared LiNi0.8Co0.1Mn0.1O2. The mixture of transition metal acetates undergoes dehydration and decomposition during heating. All the examined LiNi0.8Co0.1Mn0.1O2 samples have a layered structure with R3 m space group. LiNi0.8Co0.1Mn0.1O2 samples prepared with different lithium sources under different synthesis conditions exhibit very different charge–discharge performances. The sample synthesized via the procedure of sintering at 800 °C after heating lithium carbonate and transition metal acetates at 550 °C achieves a highest capacity of 200.8 m A·h/g and an average capacity of 188.1 mA ·h/g in the first 20 cycles at 0.2C.展开更多
基金supported by the Qingdao Jiuhuanxinyue New Energy Technology Co.,Ltd.the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120071)+2 种基金the 21C Innovation Laboratory,Contemporary Amperex Technology Ltd.(Grant No.21C-OP-202112)the financial support from the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515011873)the Shenzhen Science and Technology Program(Grant No.JCYJ20220531095212027).
文摘Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
基金supported by Huzhou Natural Science Foundation Project(Nos.2022YZ04 and 2022YZ21)S&T Special Program of Huzhou(No.2023GZ03)National Natural Science Foundation of China(No.52172184)。
文摘The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.
基金supported by National Key R&D Program of China(2021YFC2902603)Shanghai Pujiang Program(2019PJD011)。
文摘Gas-produced water is an accompanying wastewater in the natural gas extraction process,and it is a potential liquid lithium resource that contains a considerable amount of lithium.This study investigated the feasibility of using manganese-based ion sieves to adsorb and extract lithium from gas-produced water.And we focused on the applicability of two different granulation methods,extrusion and droplet,in gas-produced water systems.Two types of H_(1.33)Mn_(1.67)O_(4) particles were prepared by the extrusion method(EHMO)and the droplet method(DHMO).The porosity of DHMO was much higher than that of EHMO,and the adsorption performance of DHMO increased with the decrease of binder concentration.DHMO prepared with a binder concentration of 0.14 g·ml^(-1)exhibited the best adsorption performance in gas-produced water,and the Li^(+)adsorption capacity could reach 25.14 mg·g^(-1).In gas-produced water,the adsorption equilibrium of DHMO only took 9 h,and the adsorption process conformed to the Langmuir model and pseudo-second-order kinetic model.The pore diffusion model(PDM)could well describe its adsorption process.Besides,DHMO showed a great selectivity to Li^(+),and the selectivity order of DHMO in gas-produced water was Li^(+)>Ba^(2+)>>Mg^(2+),Ca^(2+),Sr^(2+)>>Na^(+)>>K^(+).After 20 cycles,the Li^(+)adsorption capacity was still higher than 17.30 mg·g^(-1),and the rate of manganese dissolution was less than 1%.
基金Project(2023YFC3905904)supported by the National Key Research and Development Program,ChinaProject(2220197000221)supported by the Team of Foshan National Hi-Tech Industrial Development Zone Industrialization Entrepreneurial Teams Program,ChinaProject(2024ZZTS0373)supported by the Central South University Graduate Student Autonomous Exploration Innovative Programme,China。
文摘Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.
文摘金属锂具有高理论比容量和低氧化还原电位,被认为是高能量密度二次电池最理想的负极材料之一,但其在循环过程中的枝晶生长和体积变化易造成电池失效和安全隐患.以孔径为 5 μm 左右的自制三维多孔铜为基底,在其表面电沉积锌层(3D Cu@Zn),作为金属锂沉积的集流体,构筑无枝晶锂金属电极.三维多孔铜的孔结构稳定,孔径大小适宜,可有效降低局部电流密度和缓解体积变化.锌镀层可降低锂金属的形核过电位,诱导锂的均匀沉积,有效抑制锂枝晶生长.以 3D Cu@Zn 为集流体,锂沉积面积容量为 4 m Ah·cm^(-2),电极表面仍无枝晶出现,经过锂剥离后表面仍然光滑;而铜箔上沉积的锂显示明显的枝晶和不均匀性,3D Cu 上沉积的锂显示局部不均匀性和一定量枝晶.在电流密度为 0.5 和 1m A·cm^(-2),面积容量为 1 m Ah·cm^(-2)条件下,Li||3D Cu@Zn 半电池获得了稳定的库伦效率;在 2 m A·cm^(-2)的高电流密度和 1 m Ah·cm^(-2)的面积容量条件下,Li||3D Cu@Zn@Li 对称电池可稳定循环 700 h 以上;以 3D Cu@Zn@Li 为负极,Li Fe PO_(4)为正极的全电池,在 1 C 倍率下,经过 150 次循环后仍保持 88 m Ah·g^(-1)的容量,均明显优于 Cu 片和 3D Cu 作为集流体的锂金属电极.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by the Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by the Starting Research Fund from Kunming University of Science and Technology,China
文摘LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysis was applied to investigating the mixture of transition metal acetates. X-ray powder diffraction and charge–discharge test were adopted to characterize the as-prepared LiNi0.8Co0.1Mn0.1O2. The mixture of transition metal acetates undergoes dehydration and decomposition during heating. All the examined LiNi0.8Co0.1Mn0.1O2 samples have a layered structure with R3 m space group. LiNi0.8Co0.1Mn0.1O2 samples prepared with different lithium sources under different synthesis conditions exhibit very different charge–discharge performances. The sample synthesized via the procedure of sintering at 800 °C after heating lithium carbonate and transition metal acetates at 550 °C achieves a highest capacity of 200.8 m A·h/g and an average capacity of 188.1 mA ·h/g in the first 20 cycles at 0.2C.