Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car...Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).展开更多
The increasing demand for magnesium as a next-generation structural material highlights the significance of incorporating CaF_(2)as a catalyst to enhance the efficiency of vacuum carbothermal reduction of magnesium(VC...The increasing demand for magnesium as a next-generation structural material highlights the significance of incorporating CaF_(2)as a catalyst to enhance the efficiency of vacuum carbothermal reduction of magnesium(VCTRM).This study investigates the thermodynamic theory and catalytic mechanism of CaF_(2)in the VCTRM process.Catalytic reduction experiments and molecular dynamics simulations were conducted to gain a comprehensive understanding of the process.Thermodynamic calculations indicate that in vacuum carbothermal reduction,the primary reaction occurs between MgO and C.Analysis shows that CaF_(2)'s catalytic action primarily involves F^(-),Ca^(2+),and melt eutectic.Our experiments demonstrate that the addition of CaF_(2)significantly increases the reduction rate.Furthermore,the mass loss rate increases with both the quantity of CaF_(2)added and the holding time,stabilizing at additions over 5%.Experiments conducted at temperatures above the melting point of CaF_(2)exhibited a pronounced catalytic effect.The resultant magnesium showed optimal structure and crystallization,with a purity of 87.84%.Notably,while CaF_(2)remained in the residue,it was not detected in the condensate,confirming its catalytic role.Molecular dynamics simulations revealed that molten CaF_(2)sabotages the structure of magnesium oxide,with F^(-)dispersing onto the surface of MgO,thus enhancing the reaction between MgO and C to form CO.However,no chemical reaction was observed between C,MgO,and CaF_(2).The occurrence of the carbothermal reduction reaction at high temperatures depends on the concentration of the reducing agent C,with CaF_(2)influencing the reaction rate.This research elucidates the theoretical and mechanistic foundations of CaF_(2)-catalyzed VCTRM,aligning with the green energy-saving concept and significantly advancing the green and efficient VCTRM process.展开更多
Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated ...Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated pellets,so that the energy consumption per ton of magnesium produced is reduced by 30∼40%,and the carbon emission is reduced by 43∼52%,breaking through the vacuum conditions to achieve continuous production.However,in the process of industrialization,it was found that the magnesium yield in the condenser was low.Therefore,this paper constructs a condenser model of relative vacuum continuous magnesium refining process,and comprehensively analyzes the condensation mechanism of magnesium vapor through simulation and experiment.It is found that the dynamic characteristics of magnesium vapor condensation is an important index to measure its continuity.Under the condition offlowing argon as the protective gas,when the condensation plate spacing is 10 cm,the surface roughness amplitude variance is 2,and the carrier gasflow rate is 20×10^(-3) m/s,the magnesium vapor has a better condensation effect,and the condensation efficiency formula is derived.展开更多
Magnesium(Mg),as one of the most abundant elements in earth's crust,is the lightest structural metal with extensive applications across various industries.However,the performance of Mg-based products is highly dep...Magnesium(Mg),as one of the most abundant elements in earth's crust,is the lightest structural metal with extensive applications across various industries.However,the performance of Mg-based products is highly dependent on their impurity levels,and the lack of high-purity Mg,along with efficient purification method,has posed significant challenge to its widespread industrial adoption.This study investigates the impurity behavior in Mg ingots during the vacuum gasification purification process.Through the analysis of binary phase diagrams,iron(Fe)-based foam material was selected for the filtration and purification of Mg vapor in a vacuum tube furnace.A novel approach combining vacuum gasification,vapor purification,and directional condensation is proposed.The effect of filter pore sizes and filtration temperatures on the efficacy of impurity removal was evaluated.Experimental results demonstrate that Fe-based foam with a pore size of 60 ppi,at a filtration temperature of 773 K,effectively removes impurities such as calcium(Ca),potassium(K),sodium(Na),manganese(Mn),silicon(Si),aluminum(Al),and various oxides,sulfides,and chlorides from the vapor phase.Consequently,high-purity Mg with a purity level exceeding 5N3 was obtained in the condensation zone.展开更多
Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industri...Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industrialization, the reduction rate of prefabricated pellets affects the yield of metal magnesium and the utilization of reducing slag. In this paper, the reduction mechanism under different carbonate structures is analyzed by controlled disproportionation of prefabricated pellets and micro-nano simulation. The results show that the low temperature decomposition of NH_(4)·HCO_(3)pore-forming, improve the reduction rate(99.72%) effect is remarkable. Combined with thermodynamics and relative vacuum mechanism, a theoretical model of the relationship between disproportionation pore-forming and reduction rate was established. It was concluded that the energy consumption required to produce per ton of magnesium by adding NH_(4)·HCO_(3)to the prefabricated pellets was reduced by 0.29±0.34 tce, and the carbon emission was reduced by 1.069±1.263 t. The reduction slag had good compressive strength(Side 101.19 N cm^(-2), Bottom 466.4 N cm^(-2)). Compared with the 20 MPa reduction slag sample without pore-forming agent, the side compressive strength increased by 51.66%, and the bottom compressive strength increased by 119.10%. The amount of single furnace filler is increased by more than 50%.展开更多
In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,th...In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.展开更多
基金support from the National Natural Science Foundation of China(No’s.U22B2071,51874211,52031008)the Chilwee Group(CWDY-ZH-YJY-202101-001).
文摘Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).
基金supported by the Leading Talents of Industrial Technology in Yunnan Province[grant number 618820190024]the Yunnan Province Nonferrous Metal Vacuum Metallurgy Top Team[grant number 202305AS350012].
文摘The increasing demand for magnesium as a next-generation structural material highlights the significance of incorporating CaF_(2)as a catalyst to enhance the efficiency of vacuum carbothermal reduction of magnesium(VCTRM).This study investigates the thermodynamic theory and catalytic mechanism of CaF_(2)in the VCTRM process.Catalytic reduction experiments and molecular dynamics simulations were conducted to gain a comprehensive understanding of the process.Thermodynamic calculations indicate that in vacuum carbothermal reduction,the primary reaction occurs between MgO and C.Analysis shows that CaF_(2)'s catalytic action primarily involves F^(-),Ca^(2+),and melt eutectic.Our experiments demonstrate that the addition of CaF_(2)significantly increases the reduction rate.Furthermore,the mass loss rate increases with both the quantity of CaF_(2)added and the holding time,stabilizing at additions over 5%.Experiments conducted at temperatures above the melting point of CaF_(2)exhibited a pronounced catalytic effect.The resultant magnesium showed optimal structure and crystallization,with a purity of 87.84%.Notably,while CaF_(2)remained in the residue,it was not detected in the condensate,confirming its catalytic role.Molecular dynamics simulations revealed that molten CaF_(2)sabotages the structure of magnesium oxide,with F^(-)dispersing onto the surface of MgO,thus enhancing the reaction between MgO and C to form CO.However,no chemical reaction was observed between C,MgO,and CaF_(2).The occurrence of the carbothermal reduction reaction at high temperatures depends on the concentration of the reducing agent C,with CaF_(2)influencing the reaction rate.This research elucidates the theoretical and mechanistic foundations of CaF_(2)-catalyzed VCTRM,aligning with the green energy-saving concept and significantly advancing the green and efficient VCTRM process.
基金the National Natural Science Foundation of China(U1908225,U1702253)the Special Funds for Ba-sic Research Operations of Central Universities(N182515007,N170908001,N2025004).
文摘Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated pellets,so that the energy consumption per ton of magnesium produced is reduced by 30∼40%,and the carbon emission is reduced by 43∼52%,breaking through the vacuum conditions to achieve continuous production.However,in the process of industrialization,it was found that the magnesium yield in the condenser was low.Therefore,this paper constructs a condenser model of relative vacuum continuous magnesium refining process,and comprehensively analyzes the condensation mechanism of magnesium vapor through simulation and experiment.It is found that the dynamic characteristics of magnesium vapor condensation is an important index to measure its continuity.Under the condition offlowing argon as the protective gas,when the condensation plate spacing is 10 cm,the surface roughness amplitude variance is 2,and the carrier gasflow rate is 20×10^(-3) m/s,the magnesium vapor has a better condensation effect,and the condensation efficiency formula is derived.
基金supported by the Yunnan Province Nonferrous Metal Vacuum Metallurgy Top Team[No.202305AS350012]。
文摘Magnesium(Mg),as one of the most abundant elements in earth's crust,is the lightest structural metal with extensive applications across various industries.However,the performance of Mg-based products is highly dependent on their impurity levels,and the lack of high-purity Mg,along with efficient purification method,has posed significant challenge to its widespread industrial adoption.This study investigates the impurity behavior in Mg ingots during the vacuum gasification purification process.Through the analysis of binary phase diagrams,iron(Fe)-based foam material was selected for the filtration and purification of Mg vapor in a vacuum tube furnace.A novel approach combining vacuum gasification,vapor purification,and directional condensation is proposed.The effect of filter pore sizes and filtration temperatures on the efficacy of impurity removal was evaluated.Experimental results demonstrate that Fe-based foam with a pore size of 60 ppi,at a filtration temperature of 773 K,effectively removes impurities such as calcium(Ca),potassium(K),sodium(Na),manganese(Mn),silicon(Si),aluminum(Al),and various oxides,sulfides,and chlorides from the vapor phase.Consequently,high-purity Mg with a purity level exceeding 5N3 was obtained in the condensation zone.
基金supported by the China Postdoctoral Science Foundation (No. 2023T160088)the Youth Fund of the National Natural Science Foundation of China(No.52304324)+1 种基金the National Natural Science Foundation of China (U1908225, U1702253)the Special Funds for Basic Research Operations of Central Universities(N182515007, N170908001, N2025004)。
文摘Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industrialization, the reduction rate of prefabricated pellets affects the yield of metal magnesium and the utilization of reducing slag. In this paper, the reduction mechanism under different carbonate structures is analyzed by controlled disproportionation of prefabricated pellets and micro-nano simulation. The results show that the low temperature decomposition of NH_(4)·HCO_(3)pore-forming, improve the reduction rate(99.72%) effect is remarkable. Combined with thermodynamics and relative vacuum mechanism, a theoretical model of the relationship between disproportionation pore-forming and reduction rate was established. It was concluded that the energy consumption required to produce per ton of magnesium by adding NH_(4)·HCO_(3)to the prefabricated pellets was reduced by 0.29±0.34 tce, and the carbon emission was reduced by 1.069±1.263 t. The reduction slag had good compressive strength(Side 101.19 N cm^(-2), Bottom 466.4 N cm^(-2)). Compared with the 20 MPa reduction slag sample without pore-forming agent, the side compressive strength increased by 51.66%, and the bottom compressive strength increased by 119.10%. The amount of single furnace filler is increased by more than 50%.
基金China Postdoctoral Science Foundation (No. 2020M682337)。
文摘In the Pidgeon process involving a vertical pot,bonded slag pellets occasionally emerge at the bottom of the reduction pot,impeding smooth slag discharge.To reveal the formation mechanism of the bonded slag pellets,thermodynamic calculations,X-ray diffraction(XRD),X-ray fluorescence spectrometry(XRF),electron probe microanalyzer(EPMA),X-ray photoelectron spectroscopy(XPS),and differential scanning calorimetry(DSC)were employed.The bonded slag pellets mainly comprise MgO,CaSi_(2),CaO,and Ca2SiO_(4).CaSi_(2) in the bonded slag pellets is attributed to the reduction reaction between Si and CaO,yielding liquid CaSi_(2).Simultaneously,the reaction between CaSi_(2) and MgO,which will typically produce Mg vapor,is inhibited,resulting in the accumulation of CaSi_(2).Owing to the solid-liquid transition of CaSi_(2),this process culminates in the bonding of slag pellets.This study can guide the Pidgeon process optimization,enabling mitigation of the“dead pot”issue,thereby enhancing efficiency and reducing costs.