To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical micr...To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.展开更多
Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
基金Project (50974135) supported by the National Natural Science Foundation of China
文摘To acquire understanding of Ni enrichment from laterite ore,the mineralogy and crystal chemistry of a low grade limonite type nickel laterite ore sample assaying 0.97% Ni from Indonesia were studied using optical microscopy,X-ray diffraction(XRD),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA).According to EPMA results,the mineral includes 80% goethite((Fe,Ni,Al)O(OH)) with 0.87% Ni,15% silicate minerals with lizardite((Mg,Fe,Ni)3Si2O5(OH)) and olivine((Mg,Fe,Ni)2SiO4),and 1.19% Ni,and other minor phases,such as hematite,maghemite,chromite and quartz,and no Ni was detected.The mineralogy of the laterite ore indicates that due to the complicated association of the various phases and the variable distribution of Ni,this refractory laterite ore can not be upgraded by traditional physical beneficiation processes.
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).