期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于加权LS-SVM时间序列短期瓦斯预测研究 被引量:9
1
作者 乔美英 马小平 +1 位作者 兰建义 王莹 《采矿与安全工程学报》 EI 北大核心 2011年第2期310-314,共5页
针对神经网络的瓦斯预测模型存在的泛化性能差且存在易陷入局部最优的缺点,提出了基于最小二乘支持向量机(LS-SVM)时间序列瓦斯预测方法.由于标准最小二乘支持向量机(LS-SVM)要求样本误差分布服从高斯分布,且标准LS-SVM丧失鲁棒性与稀... 针对神经网络的瓦斯预测模型存在的泛化性能差且存在易陷入局部最优的缺点,提出了基于最小二乘支持向量机(LS-SVM)时间序列瓦斯预测方法.由于标准最小二乘支持向量机(LS-SVM)要求样本误差分布服从高斯分布,且标准LS-SVM丧失鲁棒性与稀疏性等特点,提出了基于加权LS-SVM的瓦斯时间序列预测的方法,从而提高了标准LS-SVM模型的鲁棒性.其中时间序列的嵌入维数与延迟时间采用了微熵率最小原则进行选取,在此基础上给出了基于加权LS-SVM实现多步时间序列预测的算法实现步骤.最后利用MATLAB 7.1对其进行仿真研究,通过鹤壁十矿1个突出工作面的瓦斯涌出数据实例对模型进行了验证.结果表明,加权LS-SVM模型比标准的LS-SVM明显提高了鲁棒性,可较好地实现时间序列数据的多步预测. 展开更多
关键词 加权LS-SVM 时间序列 鲁棒性 瓦斯预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部