The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient uti...The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.展开更多
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeratio...Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.展开更多
The flotation separation of argentite from sphalerite using ammonium dibutyl dithiophosphate(ADD)was studied.Molecular simulation(MS)calculation shows that ADD is chemisorbed on argentite and sphalerite surface in the...The flotation separation of argentite from sphalerite using ammonium dibutyl dithiophosphate(ADD)was studied.Molecular simulation(MS)calculation shows that ADD is chemisorbed on argentite and sphalerite surface in the form of S—P bond.The ADD adsorption on argentite and sphalerite surface in Ag^(+)system was revealed by ICP,Zeta potential and XPS analyses.It is shown that the dissolved Ag^(+)from argentite surface can be absorbed on sphalerite surface in the form of silver hydroxide,and AgOH hydrophilic colloid prevents the adsorption of ADD on sphalerite surface.The ADD adsorption on argentite and sphalerite surface in the pulp containing silver and zinc ions was revealed by adsorption capacity and surface wettability analyses.It is shown that the combined Zn(OH)_(2) and AgOH hydrophilic colloid leads to greater ADD adsorption capacity on argentite surface and stronger surface hydrophobicity than sphalerite.Flotation tests demonstrate that ADD enables efficient separation of argentite from sphalerite in the pulp containing silver and zinc ions.展开更多
基金financially supported by the Excellent Youth Scholars Program of State Key Laboratory of Complex Nonferrous Metal Resource Clean Utilization,Kunming University of Science and Technology,China(No.YXQN-2024003)the Central Government-Guided Local Science and Technology Development Fund Project,China(No.202407AB110022)。
文摘The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
基金financially supported by the National Natural Science Foundation of China(No.52204284)the China Postdoctoral Science Foundation(No.2025MD784125)+2 种基金the Natural Science Foundation of Shaanxi Province,China(No.2024JC-YBQN-0365)the Shaanxi Province Postdoctoral Science Foundation,China(No.2025BSHSDZZ363)Outstanding Youth Science Fund of Xi’an University of Science and Technology,China(No.202308)。
文摘Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.
基金the support from the National Key Research and Development Program of China (No. 2022YFC2904504)the Science and Technology Research Project of Jiangxi Provincial Department of Education, China (No. GJJ2200864)the Gansu Provincial Key Research and Development Project, China (No. 22YF7GA073)。
文摘The flotation separation of argentite from sphalerite using ammonium dibutyl dithiophosphate(ADD)was studied.Molecular simulation(MS)calculation shows that ADD is chemisorbed on argentite and sphalerite surface in the form of S—P bond.The ADD adsorption on argentite and sphalerite surface in Ag^(+)system was revealed by ICP,Zeta potential and XPS analyses.It is shown that the dissolved Ag^(+)from argentite surface can be absorbed on sphalerite surface in the form of silver hydroxide,and AgOH hydrophilic colloid prevents the adsorption of ADD on sphalerite surface.The ADD adsorption on argentite and sphalerite surface in the pulp containing silver and zinc ions was revealed by adsorption capacity and surface wettability analyses.It is shown that the combined Zn(OH)_(2) and AgOH hydrophilic colloid leads to greater ADD adsorption capacity on argentite surface and stronger surface hydrophobicity than sphalerite.Flotation tests demonstrate that ADD enables efficient separation of argentite from sphalerite in the pulp containing silver and zinc ions.