医学图像分割在计算机辅助诊断和手术导航等临床应用中起着至关重要的作用,旨在从复杂的医学影像中精准提取不同器官和病灶。然而,现有的U型网络结构在实际应用中存在跳跃连接信息冗余大和计算量高等问题。为了解决这些问题,提出一种轻...医学图像分割在计算机辅助诊断和手术导航等临床应用中起着至关重要的作用,旨在从复杂的医学影像中精准提取不同器官和病灶。然而,现有的U型网络结构在实际应用中存在跳跃连接信息冗余大和计算量高等问题。为了解决这些问题,提出一种轻量化医学图像分割网络ES-TransUNet(Efficient channel attention and Simple-TransUNet)。该网络在编码器中通过引入十字交叉注意力(CCA)机制捕捉图像中的长距离依赖关系,并优化Transformer中的多头注意力结构,从而使模型轻量化,在解码器中引入动态上采样(Dysample)模块提升上采样效率;同时为了减少跳跃连接中的信息冗余,引入简单上下文Transformer(SCOT)块对冗余特征进行过滤。在Synapse多器官分割和ACDC数据集上的实验结果表明,ES-TransUNet相比TransUNet分别取得了2.37和1.57个百分点的Dice相似系数(DSC)提升,并在Synapse数据集上使Hausdorff距离(HD)降低了约9.69。此外,所提网络与现有最先进的医学分割模型的对比结果表明,ES-TransUNet在保持较高分割精度的基础上,显著降低了模型的参数量和计算复杂度,并提高了推理效率。可见,该网络更满足实时医学图像分割的实际需求。展开更多
随着工业控制系统(Industrial Control System,ICS)在各领域的广泛应用,其网络安全面临日益严峻的挑战。文章重点介绍了工业控制系统面临的主要网络攻击类型,分析了基于网络流量监控、入侵检测系统(Intrusion Detection System,IDS)和...随着工业控制系统(Industrial Control System,ICS)在各领域的广泛应用,其网络安全面临日益严峻的挑战。文章重点介绍了工业控制系统面临的主要网络攻击类型,分析了基于网络流量监控、入侵检测系统(Intrusion Detection System,IDS)和行为分析的检测技术,探讨了防火墙、加密和漏洞修复等防御手段在提高系统安全性方面的应用。此外,文章讨论了现有技术在实际应用中的局限性与挑战,并提出了未来技术的发展方向,为提升工业控制系统网络安全防护能力提供技术支持。鉴于网络攻击手段不断升级,相关检测与防御技术的发展具有重要的现实意义和理论价值。展开更多
针对现有的实例分割算法对有遮挡以及模糊实例检测精度低、掩码较粗糙以及泛化能力弱的问题,提出一种基于Fastformer和自监督对比学习的实例分割算法。首先,在特征提取网络之后加入基于加性注意力的Fastformer模块,并对每一层特征图中...针对现有的实例分割算法对有遮挡以及模糊实例检测精度低、掩码较粗糙以及泛化能力弱的问题,提出一种基于Fastformer和自监督对比学习的实例分割算法。首先,在特征提取网络之后加入基于加性注意力的Fastformer模块,并对每一层特征图中的像素点之间的相互关系进行深入建模,以提高算法对特征图全局信息的提取能力;其次,受自监督学习启发,加入自监督对比学习模块对图像中的实例进行自监督对比学习,以提高算法对图像的理解能力,从而改善在噪声干扰较多的环境下的分割效果。在Cityscapes和COCO2017数据集上的实验结果表明,相较于近期经典的实例分割算法SOLOv2(Segmenting Objects by LOcations v2),所提算法的平均精度均值(mAP)分别提高了3.1和2.5个百分点,并在实时性和精度之间达到较好的平衡,在比较复杂的场景实例分割中具有较好的鲁棒性。展开更多
文摘医学图像分割在计算机辅助诊断和手术导航等临床应用中起着至关重要的作用,旨在从复杂的医学影像中精准提取不同器官和病灶。然而,现有的U型网络结构在实际应用中存在跳跃连接信息冗余大和计算量高等问题。为了解决这些问题,提出一种轻量化医学图像分割网络ES-TransUNet(Efficient channel attention and Simple-TransUNet)。该网络在编码器中通过引入十字交叉注意力(CCA)机制捕捉图像中的长距离依赖关系,并优化Transformer中的多头注意力结构,从而使模型轻量化,在解码器中引入动态上采样(Dysample)模块提升上采样效率;同时为了减少跳跃连接中的信息冗余,引入简单上下文Transformer(SCOT)块对冗余特征进行过滤。在Synapse多器官分割和ACDC数据集上的实验结果表明,ES-TransUNet相比TransUNet分别取得了2.37和1.57个百分点的Dice相似系数(DSC)提升,并在Synapse数据集上使Hausdorff距离(HD)降低了约9.69。此外,所提网络与现有最先进的医学分割模型的对比结果表明,ES-TransUNet在保持较高分割精度的基础上,显著降低了模型的参数量和计算复杂度,并提高了推理效率。可见,该网络更满足实时医学图像分割的实际需求。
文摘随着工业控制系统(Industrial Control System,ICS)在各领域的广泛应用,其网络安全面临日益严峻的挑战。文章重点介绍了工业控制系统面临的主要网络攻击类型,分析了基于网络流量监控、入侵检测系统(Intrusion Detection System,IDS)和行为分析的检测技术,探讨了防火墙、加密和漏洞修复等防御手段在提高系统安全性方面的应用。此外,文章讨论了现有技术在实际应用中的局限性与挑战,并提出了未来技术的发展方向,为提升工业控制系统网络安全防护能力提供技术支持。鉴于网络攻击手段不断升级,相关检测与防御技术的发展具有重要的现实意义和理论价值。
文摘针对现有的实例分割算法对有遮挡以及模糊实例检测精度低、掩码较粗糙以及泛化能力弱的问题,提出一种基于Fastformer和自监督对比学习的实例分割算法。首先,在特征提取网络之后加入基于加性注意力的Fastformer模块,并对每一层特征图中的像素点之间的相互关系进行深入建模,以提高算法对特征图全局信息的提取能力;其次,受自监督学习启发,加入自监督对比学习模块对图像中的实例进行自监督对比学习,以提高算法对图像的理解能力,从而改善在噪声干扰较多的环境下的分割效果。在Cityscapes和COCO2017数据集上的实验结果表明,相较于近期经典的实例分割算法SOLOv2(Segmenting Objects by LOcations v2),所提算法的平均精度均值(mAP)分别提高了3.1和2.5个百分点,并在实时性和精度之间达到较好的平衡,在比较复杂的场景实例分割中具有较好的鲁棒性。