针对森林资源精准监测的需求,探索背包激光雷达(Light Detection and Ranging,LiDAR)在生产实践中的森林结构参数提取能力,以浙江建德林场为研究区,基于野外调查采集的8块样地背包LiDAR数据,提出一种改进的K-means分层聚类算法进行单木...针对森林资源精准监测的需求,探索背包激光雷达(Light Detection and Ranging,LiDAR)在生产实践中的森林结构参数提取能力,以浙江建德林场为研究区,基于野外调查采集的8块样地背包LiDAR数据,提出一种改进的K-means分层聚类算法进行单木分割,从分割后的单木点云中分别提取胸径、树高、冠幅、树冠投影面积、树冠体积、间隙率等6个单木结构参数,并计算56个点云分层高度特征,利用随机森林方法,构建单木材积估测模型并估测样地蓄积量。结果表明:改进的K-means分层聚类算法综合分割精度F的平均值为0.87,胸径的提取精度为91.26%,树高的提取精度为85.77%;仅用6个单木结构参数作为输入特征变量的单木材积估测模型,模型拟合结果的决定系数(R^(2))为0.89,均方根误差(RMSE)为0.053 m^(3);采用Person相关系数和随机森林特征重要性筛选单木结构参数和分层高度特征后,得到最终的单木材积估测模型,模型拟合结果的R^(2)为0.93,RMSE为0.041 m^(3);利用最优估测模型估算每个样地的蓄积量,平均精度为94.20%。研究结果表明,提出的改进的K-means分层聚类算法能够有效分割单木点云,随机森林方法可以较好地估测单木材积和样地蓄积量,为背包激光雷达在森林资源参数提取方面提供重要的参考价值。展开更多