A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of th...A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.展开更多
基金Supported by NKBRSF (Grant No. G1999043407) the Institute of Applied Ecology (grant No. SCXZD0101)+2 种基金 CAS the National Natural Science Foundation of China (NSFC39970123) and by the Changbai Mountain Open Research Station.
文摘A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.