【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery...【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery(ABGD)和Bayesian Poisson Tree Processes(bPTP)对3个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】使用ABGD方法时,cox1数据集的界定结果与形态学鉴定结果一致,cox2数据集的界定结果与形态学鉴定结果存在差异;使用bPTP方法时,2种数据集的界定结果均远高于形态学鉴定结果,且均存在不同程度的过度划分。【结论】cox1是更适合用于鉴定尤犀金龟属昆虫的DNA条形码,使用ABGD方法时,其数据集界定结果与形态学鉴定结果一致。利用分子界定与形态特征鉴定相结合,可极大地提高鉴定效率和准确性。展开更多
Accurate,reliable,and regularly updated information is necessary for targeted management of forest stands.This information is usually obtained from sample-based field inventory data.Due to the time-consuming and costl...Accurate,reliable,and regularly updated information is necessary for targeted management of forest stands.This information is usually obtained from sample-based field inventory data.Due to the time-consuming and costly procedure of forest inventory,it is imperative to generate and use the resulting data optimally.Integrating field inventory information with remote sensing data increases the value of field approaches,such as national forest inventories.This study investigated the optimal integration of forest inventory data with aerial image-based canopy height models(CHM)for forest growing stock estimation.For this purpose,fixed-area and angle-count plots from a forest area in Austria were used to assess which type of inventory system is more suitable when the field data is integrated with aerial image analysis.Although a higher correlation was observed between remotely predicted growing stocks and field inventory values for fixed-area plots,the paired t-test results revealed no statistical difference between the two methods.The R2 increased by 0.08 points and the RMSE decreased by 7.7 percentage points(24.8m^(3)·ha^(−1))using fixed-area plots.Since tree height is the most critical variable essential for modeling forest growing stock using aerial images,we also compared the tree heights obtained from CHM to those from the typical field inventory approach.The result shows a high correlation(R^(2)=0.781)between the tree heights extracted from the CHM and those measured in the field.However,the correlation decreased by 0.113 points and the RMSE increased by 4.2 percentage points(1.04m)when the allometrically derived tree heights were analyzed.Moreover,the results of the paired t-test revealed that there is no significant statistical difference between the tree heights extracted from CHM and those measured in the field,but there is a significant statistical difference when the CHM-derived and the allometrically-derived heights were compared.This proved that image-based CHM can obtain more accurate tree height information than field inventory estimations.Overall,the results of this study demonstrated that image-based CHM can be integrated into the forest inventory data at large scales and provide reliable information on forest growing stock.The produced maps reflect the variability of growth conditions and developmental stages of different forest stands.This information is required to characterize the status and changes,e.g.,in forest structure diversity,parameters for volume,and can be used for forest aboveground biomass estimation,which plays an important role in managing and controlling forest resources in mid-term forest management.This is of particular interest to forest managers and forest ecologists.展开更多
Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived chall...Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.展开更多
Commercially managed forests are often poor in terms of biodiversity.Saproxylic beetle species could be a useful bioindicating group for the conservation of forest stands.In recent decades,oak stands have been affecte...Commercially managed forests are often poor in terms of biodiversity.Saproxylic beetle species could be a useful bioindicating group for the conservation of forest stands.In recent decades,oak stands have been affected by a wide range of factors that have intensified stand decline.Saproxylic beetle richness was investigated in declining oak stands that have been consequently targeted for clearcutting due to concerns about insect pest outbreaks.The research was conducted at six managed oak forests,where we compared beetle occurrences in declining stands and in healthy stands that did not show any symptoms of decline.Beetles were collected using window traps placed on the basal and mid-trunk sections of trees.A total of 2925 adults belonging to 239 saproxylic beetle species were captured,of which 56 species are on the IUCN Red List.The results show that declining stands were richer in saproxylic species,and that the diversity of beetle species was greater in these stands.Approximately 1.4 times more species were caught within declining stands than in healthy ones(1.6 times for Red List species).Declining stands hosted more pest species(e.g.,cambiophagous and xylophagous species).However,only low numbers of these species were recorded in these stands.In summary,results of this study suggest that decline of managed oak stands is creating a wide spectrum of habitats for many saproxylic species.Thus,salvage logging of declining oak trees can represent a natural trap and reduce local beetle biodiversity,mainly for saproxylic,endangered or low-mobility species that would be attracted by new suitable habitats.展开更多
[Objectives]To investigate the mechanism of endophytic fungi mediating the plant growth and promoting the accumulation of secondary metabolites in Camellia oleifera.[Methods]Four strains of endophytic fungi isolated f...[Objectives]To investigate the mechanism of endophytic fungi mediating the plant growth and promoting the accumulation of secondary metabolites in Camellia oleifera.[Methods]Four strains of endophytic fungi isolated from the rhizomes of C.oleifera were co-cultured with C.oleifera seedlings individually in sterile soil for 49 d:Didymella sp.(DS),Fusarium sp.(FS),Penicillium sp.(PS),and Clonostachys rosea(CR).[Results]The biological activities of the four fungal strains differed,but all exhibited the ability to promote quercetin accumulation while simultaneously reducing quercetin glycosides after co-culture with C.oleifera seedlings.The DS,FS and PS treatments resulted in a significant increase in the leaf area of C.oleifera,with all of the experimental groups exhibiting a weight increase of over 50%compared to the control(CON)group.[Conclusions]Our findings demonstrate the potential utility of endophytic fungi in the production of C.oleifera,highlighting their capacity to enhance both productivity and the accumulation of plant metabolites.展开更多
文摘【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery(ABGD)和Bayesian Poisson Tree Processes(bPTP)对3个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】使用ABGD方法时,cox1数据集的界定结果与形态学鉴定结果一致,cox2数据集的界定结果与形态学鉴定结果存在差异;使用bPTP方法时,2种数据集的界定结果均远高于形态学鉴定结果,且均存在不同程度的过度划分。【结论】cox1是更适合用于鉴定尤犀金龟属昆虫的DNA条形码,使用ABGD方法时,其数据集界定结果与形态学鉴定结果一致。利用分子界定与形态特征鉴定相结合,可极大地提高鉴定效率和准确性。
基金supported by grants provided within the research project»EO4Forest:Use of multi-temporal Sentinel-2 and VHR Pleiades stereo data for sustainable forest monitoring and management«funded by the Austrian Federal Ministry for Climate Action,Environ-ment,Energy,Mobility,Innovation and Technology(BMK)within the FFG Austrian Space Applications Program ASAP 12(grant agreement number 854027).
文摘Accurate,reliable,and regularly updated information is necessary for targeted management of forest stands.This information is usually obtained from sample-based field inventory data.Due to the time-consuming and costly procedure of forest inventory,it is imperative to generate and use the resulting data optimally.Integrating field inventory information with remote sensing data increases the value of field approaches,such as national forest inventories.This study investigated the optimal integration of forest inventory data with aerial image-based canopy height models(CHM)for forest growing stock estimation.For this purpose,fixed-area and angle-count plots from a forest area in Austria were used to assess which type of inventory system is more suitable when the field data is integrated with aerial image analysis.Although a higher correlation was observed between remotely predicted growing stocks and field inventory values for fixed-area plots,the paired t-test results revealed no statistical difference between the two methods.The R2 increased by 0.08 points and the RMSE decreased by 7.7 percentage points(24.8m^(3)·ha^(−1))using fixed-area plots.Since tree height is the most critical variable essential for modeling forest growing stock using aerial images,we also compared the tree heights obtained from CHM to those from the typical field inventory approach.The result shows a high correlation(R^(2)=0.781)between the tree heights extracted from the CHM and those measured in the field.However,the correlation decreased by 0.113 points and the RMSE increased by 4.2 percentage points(1.04m)when the allometrically derived tree heights were analyzed.Moreover,the results of the paired t-test revealed that there is no significant statistical difference between the tree heights extracted from CHM and those measured in the field,but there is a significant statistical difference when the CHM-derived and the allometrically-derived heights were compared.This proved that image-based CHM can obtain more accurate tree height information than field inventory estimations.Overall,the results of this study demonstrated that image-based CHM can be integrated into the forest inventory data at large scales and provide reliable information on forest growing stock.The produced maps reflect the variability of growth conditions and developmental stages of different forest stands.This information is required to characterize the status and changes,e.g.,in forest structure diversity,parameters for volume,and can be used for forest aboveground biomass estimation,which plays an important role in managing and controlling forest resources in mid-term forest management.This is of particular interest to forest managers and forest ecologists.
文摘Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.
基金supported by grant No.QL24020204funded by the Ministry of Agriculture of the Czech Republic and Internal Grant Agency of Faculty of Forestry and Wood Science CZU(reg.no.A_01_22)"EVA 4.0"No.CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE.
文摘Commercially managed forests are often poor in terms of biodiversity.Saproxylic beetle species could be a useful bioindicating group for the conservation of forest stands.In recent decades,oak stands have been affected by a wide range of factors that have intensified stand decline.Saproxylic beetle richness was investigated in declining oak stands that have been consequently targeted for clearcutting due to concerns about insect pest outbreaks.The research was conducted at six managed oak forests,where we compared beetle occurrences in declining stands and in healthy stands that did not show any symptoms of decline.Beetles were collected using window traps placed on the basal and mid-trunk sections of trees.A total of 2925 adults belonging to 239 saproxylic beetle species were captured,of which 56 species are on the IUCN Red List.The results show that declining stands were richer in saproxylic species,and that the diversity of beetle species was greater in these stands.Approximately 1.4 times more species were caught within declining stands than in healthy ones(1.6 times for Red List species).Declining stands hosted more pest species(e.g.,cambiophagous and xylophagous species).However,only low numbers of these species were recorded in these stands.In summary,results of this study suggest that decline of managed oak stands is creating a wide spectrum of habitats for many saproxylic species.Thus,salvage logging of declining oak trees can represent a natural trap and reduce local beetle biodiversity,mainly for saproxylic,endangered or low-mobility species that would be attracted by new suitable habitats.
基金Supported by the Key Field Project of Guizhou Provincial Education Department(KY[2021]044)Guizhou Forestry Science Research Project(QJH KY[2021]11)Guizhou Higher Education Characteristic Key Laboratory Construction Project(QJH KY[2021]002).
文摘[Objectives]To investigate the mechanism of endophytic fungi mediating the plant growth and promoting the accumulation of secondary metabolites in Camellia oleifera.[Methods]Four strains of endophytic fungi isolated from the rhizomes of C.oleifera were co-cultured with C.oleifera seedlings individually in sterile soil for 49 d:Didymella sp.(DS),Fusarium sp.(FS),Penicillium sp.(PS),and Clonostachys rosea(CR).[Results]The biological activities of the four fungal strains differed,but all exhibited the ability to promote quercetin accumulation while simultaneously reducing quercetin glycosides after co-culture with C.oleifera seedlings.The DS,FS and PS treatments resulted in a significant increase in the leaf area of C.oleifera,with all of the experimental groups exhibiting a weight increase of over 50%compared to the control(CON)group.[Conclusions]Our findings demonstrate the potential utility of endophytic fungi in the production of C.oleifera,highlighting their capacity to enhance both productivity and the accumulation of plant metabolites.