温室环境的精准调控对于提高作物产量与品质具有极为关键的意义。温室气体浓度和光照强度是两个核心的环境参数。AT 80 C 51单片机通过连接气体浓度传感器与光照强度传感器,对采集到的温室气体浓度和光照强度数据进行快速处理与分析,并...温室环境的精准调控对于提高作物产量与品质具有极为关键的意义。温室气体浓度和光照强度是两个核心的环境参数。AT 80 C 51单片机通过连接气体浓度传感器与光照强度传感器,对采集到的温室气体浓度和光照强度数据进行快速处理与分析,并根据作物的实际需求,对温室气体浓度及光照强度进行自动调节,从而保证温室作物的最佳生长环境。展开更多
传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, ...传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。展开更多
文摘温室环境的精准调控对于提高作物产量与品质具有极为关键的意义。温室气体浓度和光照强度是两个核心的环境参数。AT 80 C 51单片机通过连接气体浓度传感器与光照强度传感器,对采集到的温室气体浓度和光照强度数据进行快速处理与分析,并根据作物的实际需求,对温室气体浓度及光照强度进行自动调节,从而保证温室作物的最佳生长环境。
文摘传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。