研究了中红外光谱预测香菇蛋白质含量的可行性。去掉明显噪声部分后,研究香菇3581~689 cm-1中红外光谱与蛋白质含量的关系。以Savitzky-Golay(SG)5点平滑预处理光谱建立偏最小二乘法(par-tial least squares,PLS)的预测模型的效果不理想...研究了中红外光谱预测香菇蛋白质含量的可行性。去掉明显噪声部分后,研究香菇3581~689 cm-1中红外光谱与蛋白质含量的关系。以Savitzky-Golay(SG)5点平滑预处理光谱建立偏最小二乘法(par-tial least squares,PLS)的预测模型的效果不理想,模型的建模集和预测集的相关系数均高于0.85,但剩余预测偏差(residual prediction deviation,RPD)值仅为1.77。采用连续投影算法(successive projections algo-rithm,SPA)算法从3000个波数点中选择7个特征波数,并以七个特征波数分别建立PLS、多元线性回归(multiple linear regression,MLR)、反向传播神经网络(back-propagation neural network,BPNN)和极限学习机模型(extreme learning machine,ELM)。与全谱的PLS相比,以特征波数的PLS模型和MLR模型的预测效果相对较差,而以特征波数的BPNN和ELM模型的预测效果相对较好。其中SPA-ELM模型的预测效果最佳,预测集相关系数(correlation coefficient of prediction)Rp=0.8995,预测集均方根误差(root mean square error of prediction)RMSEP=1.4313,剩余预测偏差RPD=2.18。研究结果表明,中红外光谱分析技术可以用于预测香菇蛋白质含量,且SPA选取特征波数能用来代替原始光谱进行建模分析,为香菇蛋白质含量的检测提供了新的思路。展开更多
文摘研究了中红外光谱预测香菇蛋白质含量的可行性。去掉明显噪声部分后,研究香菇3581~689 cm-1中红外光谱与蛋白质含量的关系。以Savitzky-Golay(SG)5点平滑预处理光谱建立偏最小二乘法(par-tial least squares,PLS)的预测模型的效果不理想,模型的建模集和预测集的相关系数均高于0.85,但剩余预测偏差(residual prediction deviation,RPD)值仅为1.77。采用连续投影算法(successive projections algo-rithm,SPA)算法从3000个波数点中选择7个特征波数,并以七个特征波数分别建立PLS、多元线性回归(multiple linear regression,MLR)、反向传播神经网络(back-propagation neural network,BPNN)和极限学习机模型(extreme learning machine,ELM)。与全谱的PLS相比,以特征波数的PLS模型和MLR模型的预测效果相对较差,而以特征波数的BPNN和ELM模型的预测效果相对较好。其中SPA-ELM模型的预测效果最佳,预测集相关系数(correlation coefficient of prediction)Rp=0.8995,预测集均方根误差(root mean square error of prediction)RMSEP=1.4313,剩余预测偏差RPD=2.18。研究结果表明,中红外光谱分析技术可以用于预测香菇蛋白质含量,且SPA选取特征波数能用来代替原始光谱进行建模分析,为香菇蛋白质含量的检测提供了新的思路。