Maize chlorotic dwarf virus (MCDV) is a quarantine pest as approved by Chinese government. A rapid, sensitive and specific MCDV detection method using reverse transcription-loop-mediated isothermal amplification (R...Maize chlorotic dwarf virus (MCDV) is a quarantine pest as approved by Chinese government. A rapid, sensitive and specific MCDV detection method using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was estab- lished in this study. Based on the sequence of MCDV coat protein coding gene, specific primers were designed and similar sensitivities were observed between RT- LAMP and RT-PCR, except that RT-LAMP was quicker, and the reaction could be finished within 1 h. In addition, the presence or absence of the fluorescent display in daylight allows naked easy detection of the amplification of MCDV genomic RNA using calcein. The RT-LAMP assay was applied successfully to detect MCDV in maize seeds, and the result by the addition of calcein was consistent with the result detected by the real time turbidimeter.展开更多
卷积神经网络模型可通过作物病害图像准确率较高地识别作物病害类型,达到防治作物病害的目的,但传统卷积神经网络模型存在模型尺寸大、迁移效果差等问题。针对这些问题,引入学习率动态衰减训练策略,使用EfficientNetV2的Fused-MBConv和M...卷积神经网络模型可通过作物病害图像准确率较高地识别作物病害类型,达到防治作物病害的目的,但传统卷积神经网络模型存在模型尺寸大、迁移效果差等问题。针对这些问题,引入学习率动态衰减训练策略,使用EfficientNetV2的Fused-MBConv和MBConv模块替换ResNet18的部分残差模块,提出Res-Efficient模型。实验证明,使用学习率动态衰减策略能提高Res-Efficient模型识别作物病害的准确率,Res-Efficient模型在Plant Village和2018 AI Challenger测试集上分别达到99.70%和87.20%的准确率,模型尺寸减少到14.0 MB。Res-Efficient模型能为移动端和嵌入式设备部署作物病害自动识别应用提供参考。展开更多
Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were develop...Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper(SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480(w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560(individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.展开更多
Maize chlorotic mottle virus (MCMV) is a quarantine pest as approved by Chinese government: A rapid, sensitive and specific MCMV detection method using reverse transcription-loop-mediated isothermal amplification ...Maize chlorotic mottle virus (MCMV) is a quarantine pest as approved by Chinese government: A rapid, sensitive and specific MCMV detection method using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was established in this study. Based on the sequence of MCMV coat protein coding gene, 3 sets of primers were designed and specificity test showed that the second set of primers was specific to MCMV, Similar sensitivities were observed on RT-LAMP and RT-PCR, except that RT-LAMP was quicker, and the reaction could be finished within 1 h. In addition, the presence or absence of the fluorescence under daylight allows naked easy detection of the amplification of MCMV genomic RNA using calcein. The RT-LAMP assay was applied successfully to detect MCMV in maize seeds, and the result by the addition of calcein was consistent with the result detected by the real time turbidimeter. The method is rapid, specific, sensitive without the need for complicated equipment, and is suitable for rapid field detection of MCMV.展开更多
根据番茄褐色皱果病毒(tomato brown rugose fruit virus,ToBRFV)外壳蛋白(coat protein,CP)的保守基因序列设计1对特异性引物,建立了基于SYBR Green I的ToBRFV实时荧光RT-PCR检测方法,并对其进行了特异性、灵敏度检测,对自然感染ToBRF...根据番茄褐色皱果病毒(tomato brown rugose fruit virus,ToBRFV)外壳蛋白(coat protein,CP)的保守基因序列设计1对特异性引物,建立了基于SYBR Green I的ToBRFV实时荧光RT-PCR检测方法,并对其进行了特异性、灵敏度检测,对自然感染ToBRFV的番茄、辣椒种子进行了检测验证。结果表明,构建的实时荧光RT-PCR检测ToBRFV阳性的番茄种子总RNA和重组质粒标准品的检测低限分别为0.2 ng/μL和50.0拷贝/μL,均为普通RT-PCR检测灵敏度的100倍;对番茄花叶病毒(tomato mosaic virus,ToMV)、番茄环斑病毒(tomato ringspot virus,ToRSV)、番茄黑环病毒(tomato black ring virus,TBRV)、番茄斑萎病毒(tomato spotted wilt virus,TSWV)、辣椒轻斑驳病毒(pepper mild mottle virus,PMMoV)、烟草花叶病毒(tobacco mosaic virus,TMV)和烟草环斑病毒(tobacco ringspot virus,TRSV)等7种病毒均无扩增反应,具有很好的特异性。对50份疑似感染了ToBRFV的番茄和辣椒种子样品检测结果表明,与常规RT-PCR和已报道的2种实时荧光RT-PCR方法相比,本研究建立的实时荧光RT-PCR方法具有准确率高、特异性强、灵敏度高的特点,适用于低丰度ToBRFV的种子检测。展开更多
[Objective]The paper was to establish a rapid identification method of Bactrocera cilifera(Hendel)with species-specific primers(SS-COI).[Method]Using B.cilifera(Hendel)as the positive control,and 19 species of fruit f...[Objective]The paper was to establish a rapid identification method of Bactrocera cilifera(Hendel)with species-specific primers(SS-COI).[Method]Using B.cilifera(Hendel)as the positive control,and 19 species of fruit flies such as B.diaphora(Coquillett)and B.dorsalis(Hendel)as the negative controls,a pair of species-specific primers,YF290 and YR511,were designed and screened for accurate identification of B.cilifera,based on mitochondrial DNA COI sequence.[Result]The PCR products were amplified and detected by electrophoresis.Only a clear and single band was observed at about 222 bp in the positive control,while no bands were found in the other negative controls.[Conclusion]The established rapid identification method with species-specific primers(SS-COI)is of great practical significance for rapid identification of fruit flies intercepted from import and export fruits and vegetables at ports,and for rapid clearance and early warning of import fruits and vegetables at ports.展开更多
文摘Maize chlorotic dwarf virus (MCDV) is a quarantine pest as approved by Chinese government. A rapid, sensitive and specific MCDV detection method using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was estab- lished in this study. Based on the sequence of MCDV coat protein coding gene, specific primers were designed and similar sensitivities were observed between RT- LAMP and RT-PCR, except that RT-LAMP was quicker, and the reaction could be finished within 1 h. In addition, the presence or absence of the fluorescent display in daylight allows naked easy detection of the amplification of MCDV genomic RNA using calcein. The RT-LAMP assay was applied successfully to detect MCDV in maize seeds, and the result by the addition of calcein was consistent with the result detected by the real time turbidimeter.
文摘卷积神经网络模型可通过作物病害图像准确率较高地识别作物病害类型,达到防治作物病害的目的,但传统卷积神经网络模型存在模型尺寸大、迁移效果差等问题。针对这些问题,引入学习率动态衰减训练策略,使用EfficientNetV2的Fused-MBConv和MBConv模块替换ResNet18的部分残差模块,提出Res-Efficient模型。实验证明,使用学习率动态衰减策略能提高Res-Efficient模型识别作物病害的准确率,Res-Efficient模型在Plant Village和2018 AI Challenger测试集上分别达到99.70%和87.20%的准确率,模型尺寸减少到14.0 MB。Res-Efficient模型能为移动端和嵌入式设备部署作物病害自动识别应用提供参考。
基金Project supported by the National Key Research and Development Program of China(No.2016YFD0300706)the Ministry of Agriculture of China(No.2016ZX08009003-001)+1 种基金the National Natural Science Foundation of China(No.31571976)the Earmarked Fund for China Agriculture Research System(No.nycytux-001)
文摘Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper(SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480(w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560(individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.
文摘Maize chlorotic mottle virus (MCMV) is a quarantine pest as approved by Chinese government: A rapid, sensitive and specific MCMV detection method using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was established in this study. Based on the sequence of MCMV coat protein coding gene, 3 sets of primers were designed and specificity test showed that the second set of primers was specific to MCMV, Similar sensitivities were observed on RT-LAMP and RT-PCR, except that RT-LAMP was quicker, and the reaction could be finished within 1 h. In addition, the presence or absence of the fluorescence under daylight allows naked easy detection of the amplification of MCMV genomic RNA using calcein. The RT-LAMP assay was applied successfully to detect MCMV in maize seeds, and the result by the addition of calcein was consistent with the result detected by the real time turbidimeter. The method is rapid, specific, sensitive without the need for complicated equipment, and is suitable for rapid field detection of MCMV.
基金Supported by Natural Science Foundation of Fujian Province (2011J01066, 2012JO1061)。
文摘[Objective]The paper was to establish a rapid identification method of Bactrocera cilifera(Hendel)with species-specific primers(SS-COI).[Method]Using B.cilifera(Hendel)as the positive control,and 19 species of fruit flies such as B.diaphora(Coquillett)and B.dorsalis(Hendel)as the negative controls,a pair of species-specific primers,YF290 and YR511,were designed and screened for accurate identification of B.cilifera,based on mitochondrial DNA COI sequence.[Result]The PCR products were amplified and detected by electrophoresis.Only a clear and single band was observed at about 222 bp in the positive control,while no bands were found in the other negative controls.[Conclusion]The established rapid identification method with species-specific primers(SS-COI)is of great practical significance for rapid identification of fruit flies intercepted from import and export fruits and vegetables at ports,and for rapid clearance and early warning of import fruits and vegetables at ports.