针对地轮驱动的玉米排种工作方式存在地轮打滑而造成漏播率增加的问题,设计了基于无刷直流电机驱动(Brushless Direct Current Motor,BLDCM)的智能播种控制系统。该系统以STM32单片机作为PID控制器的核心处理器,利用无刷直流电机作为排...针对地轮驱动的玉米排种工作方式存在地轮打滑而造成漏播率增加的问题,设计了基于无刷直流电机驱动(Brushless Direct Current Motor,BLDCM)的智能播种控制系统。该系统以STM32单片机作为PID控制器的核心处理器,利用无刷直流电机作为排种器驱动源,并通过增量式编码器实时采集排种器的转速,同时利用霍尔传感器获取播种作业速度。为实现PID控制的最优化,在Simulink环境下建立无刷直流电机的仿真模型,并结合PSO(Particle Swarm Optimization,粒子群优化)算法对PID参数进行优化设计。仿真结果表明:经PSO整定后,PID控制器的阶跃响应效果良好,超调量为4%,调节时间为0.12s。田间试验结果表明:在低速、中速、高速和变速作业条件下,本电机驱动系统较传统地轮驱动系统在漏播指数方面分别降低了0.9%、1.1%、1.4%和1.3%,在播种合格指数方面分别提高了1.8%、3.8%、2.8%和1.7%。展开更多
为实现大面积区域农田环境的实时远程连续监测,对比保护性耕作和传统耕作技术的农田环境信息,开发农田环境信息采集与远程监测系统。该系统利用STC12C5A60S2单片机为核心控制器,通过GSM(Global System for Mobile Communications)无线...为实现大面积区域农田环境的实时远程连续监测,对比保护性耕作和传统耕作技术的农田环境信息,开发农田环境信息采集与远程监测系统。该系统利用STC12C5A60S2单片机为核心控制器,通过GSM(Global System for Mobile Communications)无线传输网络进行SMS(Short Messaging Service)信息发送,利用太阳能电池板对采集节点进行供电,通过GIS(Geographic Information System)软件进行农田环境的实时监测。实验结果表明:远程监测系统能够连续准确地传送实时数据,监测时间分别为播种期,生长期,收获期,系统在传统耕作模式下检测精度为97.30%,95.18%,96.64%,在保护性耕作模式下检测精度为96.39%,95.11%,95.34%;在中国北方玉米生长季节,保护性耕作土壤含水量明显高于传统耕作土壤含水量,并且当降雨量减少时,采用保护性耕作的土壤水分利用率较传统耕作技术有明显的提高。展开更多
文摘针对地轮驱动的玉米排种工作方式存在地轮打滑而造成漏播率增加的问题,设计了基于无刷直流电机驱动(Brushless Direct Current Motor,BLDCM)的智能播种控制系统。该系统以STM32单片机作为PID控制器的核心处理器,利用无刷直流电机作为排种器驱动源,并通过增量式编码器实时采集排种器的转速,同时利用霍尔传感器获取播种作业速度。为实现PID控制的最优化,在Simulink环境下建立无刷直流电机的仿真模型,并结合PSO(Particle Swarm Optimization,粒子群优化)算法对PID参数进行优化设计。仿真结果表明:经PSO整定后,PID控制器的阶跃响应效果良好,超调量为4%,调节时间为0.12s。田间试验结果表明:在低速、中速、高速和变速作业条件下,本电机驱动系统较传统地轮驱动系统在漏播指数方面分别降低了0.9%、1.1%、1.4%和1.3%,在播种合格指数方面分别提高了1.8%、3.8%、2.8%和1.7%。
文摘为实现大面积区域农田环境的实时远程连续监测,对比保护性耕作和传统耕作技术的农田环境信息,开发农田环境信息采集与远程监测系统。该系统利用STC12C5A60S2单片机为核心控制器,通过GSM(Global System for Mobile Communications)无线传输网络进行SMS(Short Messaging Service)信息发送,利用太阳能电池板对采集节点进行供电,通过GIS(Geographic Information System)软件进行农田环境的实时监测。实验结果表明:远程监测系统能够连续准确地传送实时数据,监测时间分别为播种期,生长期,收获期,系统在传统耕作模式下检测精度为97.30%,95.18%,96.64%,在保护性耕作模式下检测精度为96.39%,95.11%,95.34%;在中国北方玉米生长季节,保护性耕作土壤含水量明显高于传统耕作土壤含水量,并且当降雨量减少时,采用保护性耕作的土壤水分利用率较传统耕作技术有明显的提高。