Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)...Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)cases,highlighting an urgent need to discover new therapeutic targets.This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays,with the goal of informing new clinical treatment strategies.Results:Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1(P2RX1)was associated with unfavorable outcomes.Specifically,patients with poor prognosis and low P2RX1 expression exhibited downregulation of genes involved in energy and calcium metabolism pathways,along with upregulation of genes governing key cellular processes such as cell proliferation(e.g.,MYC),cell cycle progression(e.g.,CCND2),and apoptosis inhibition(e.g.,DASP6).Cellular experiments demonstrated that SUP-B15 cells overexpressing P2RX1 displayed elevated intracellular levels of ATP,calcium,and glucose,together with enhanced glycolytic capacity,compared to empty vector controls.Treatment of SUP-B15 cells with dexamethasone(Dex),Imatinib,or their combination significantly suppressed proliferation and promoted apoptosis,which was accompanied by increases in intracellular ATP,calcium,and glucose.Moreover,exogenous ATP administration(a P2RX1 agonist)enhanced apoptosis and inhibited proliferation in control cells.Conversely,treatment with NF449(a P2RX1 inhibitor)increased proliferation in both P2RX1-overexpressing and control SUP-B15 cells.Conclusion:Our findings indicate that P2RX1 may exert this function through modulating energy metabolism and calcium homeostasis,resulting in elevated intracellular calcium levels.Sustained elevation of calcium promotes apoptosis,whereas exogenous ATP activates P2RX1,enhances calcium influx,and attenuates the suppression of apoptosis associated with P2RX1 underexpression,ultimately correlating with improved treatment response.展开更多
基金supported by Guangdong Province Basic and Applied Basic Research Fund Project(2023A1515220104)Open Fund of Key Laboratory of Hepatoaplenic Surgery,Ministry of Education(Award Number:GPKF202407).
文摘Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)cases,highlighting an urgent need to discover new therapeutic targets.This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays,with the goal of informing new clinical treatment strategies.Results:Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1(P2RX1)was associated with unfavorable outcomes.Specifically,patients with poor prognosis and low P2RX1 expression exhibited downregulation of genes involved in energy and calcium metabolism pathways,along with upregulation of genes governing key cellular processes such as cell proliferation(e.g.,MYC),cell cycle progression(e.g.,CCND2),and apoptosis inhibition(e.g.,DASP6).Cellular experiments demonstrated that SUP-B15 cells overexpressing P2RX1 displayed elevated intracellular levels of ATP,calcium,and glucose,together with enhanced glycolytic capacity,compared to empty vector controls.Treatment of SUP-B15 cells with dexamethasone(Dex),Imatinib,or their combination significantly suppressed proliferation and promoted apoptosis,which was accompanied by increases in intracellular ATP,calcium,and glucose.Moreover,exogenous ATP administration(a P2RX1 agonist)enhanced apoptosis and inhibited proliferation in control cells.Conversely,treatment with NF449(a P2RX1 inhibitor)increased proliferation in both P2RX1-overexpressing and control SUP-B15 cells.Conclusion:Our findings indicate that P2RX1 may exert this function through modulating energy metabolism and calcium homeostasis,resulting in elevated intracellular calcium levels.Sustained elevation of calcium promotes apoptosis,whereas exogenous ATP activates P2RX1,enhances calcium influx,and attenuates the suppression of apoptosis associated with P2RX1 underexpression,ultimately correlating with improved treatment response.