Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal ce...Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal cells(MSCs)exhibited greater therapeutic efficacy than CD146-MSCs.These cells enhance epithelial repair through nuclear factor kappa B/cyclooxygenase-2-associated paracrine signaling and secretion of pro-angiogenic factors.We concur that MSCs hold significant promise for ARDS treatment;however,the heterogeneity of cell products is a translational barrier.Phenotype-aware strategies,such as CD146 enrichment,standardized potency assays,and extracellular vesicle profiling,are essential for improving the consistency of these studies.Further-more,advanced preclinical models,such as lung-on-a-chip systems,may provide more predictive insights into the therapeutic mechanisms.This article underscores the importance of CD146+MSCs in ARDS,emphasizes the need for precision in defining cell products,and discusses how integrating subset selection into translational pipelines could enhance the clinical impact of MSC-based therapies.展开更多
基金the Scientific and Technological Research Council of Türkiye(TÜBİTAK)Under the International Postdoctoral Research Fellowship Program(2219),No.1059B192400980the National Postdoctoral Research Fellowship Program(2218),No.122C158.
文摘Acute respiratory distress syndrome(ARDS)is a life-threatening condition that is characterized by high mortality rates and limited therapeutic options.Notably,Zhang et al demonstrated that CD146+mesenchymal stromal cells(MSCs)exhibited greater therapeutic efficacy than CD146-MSCs.These cells enhance epithelial repair through nuclear factor kappa B/cyclooxygenase-2-associated paracrine signaling and secretion of pro-angiogenic factors.We concur that MSCs hold significant promise for ARDS treatment;however,the heterogeneity of cell products is a translational barrier.Phenotype-aware strategies,such as CD146 enrichment,standardized potency assays,and extracellular vesicle profiling,are essential for improving the consistency of these studies.Further-more,advanced preclinical models,such as lung-on-a-chip systems,may provide more predictive insights into the therapeutic mechanisms.This article underscores the importance of CD146+MSCs in ARDS,emphasizes the need for precision in defining cell products,and discusses how integrating subset selection into translational pipelines could enhance the clinical impact of MSC-based therapies.