Objective:To develop chitosan-silver nanoparticles targeting Pseudomonas aeruginosa biofilms and verify their antibacterial performance through animal experiments.Methods:Chitosan,silver nitrate,glacial acetic acid,an...Objective:To develop chitosan-silver nanoparticles targeting Pseudomonas aeruginosa biofilms and verify their antibacterial performance through animal experiments.Methods:Chitosan,silver nitrate,glacial acetic acid,and other chemical reagents were used to synthesize chitosan-silver nanoparticles.The characterization,minimum inhibitory concentration,and biofilm inhibition rate of the chitosan-silver nanoparticles were tested.A total of 40 SD rats were randomly divided into four groups.After routine adaptive feeding,the control group received intraperitoneal injection of normal saline;the model group received intraperitoneal injection of Pseudomonas aeruginosa suspension;the positive group received intraperitoneal injection of Pseudomonas aeruginosa suspension mixed with ampicillin at a volume ratio of 1∶1;the observation group received intraperitoneal injection of Pseudomonas aeruginosa suspension mixed with chitosan-silver nanoparticles(at minimum inhibitory concentration)at a volume ratio of 1∶1.Bacterial load,inflammatory factors,and liver and kidney function indicators in tissues were observed and compared among the four groups on the 3^(rd)day after treatment.Results:When the concentration of chitosansilver nanoparticles reached 8μg/mL or above,the OD value of the experimental wells was close to that of the control wells,indicating that 8μg/mL was the minimum inhibitory concentration of the chitosan-silver nanoparticles;at concentrations of 8μg/mL or above,the biofilm inhibition rate was greater than 80%.The bacterial load in the observation group was significantly lower than that in the model and positive groups(P<0.05).The expression levels of interleukin-6,interferon-γ,and tumor necrosis factor-αin the observation group were significantly lower than those in the model and positive groups(P<0.05).There were no statistically significant differences in alanine aminotransferase,aspartate aminotransferase,blood urea nitrogen,and creatinine levels among the four groups(P>0.05).Conclusion:The chitosan-silver nanoparticles targeting Pseudomonas aeruginosa biofilms constructed in this study exhibit good antibacterial effects against Pseudomonas aeruginosa and have good safety.展开更多
文摘Objective:To develop chitosan-silver nanoparticles targeting Pseudomonas aeruginosa biofilms and verify their antibacterial performance through animal experiments.Methods:Chitosan,silver nitrate,glacial acetic acid,and other chemical reagents were used to synthesize chitosan-silver nanoparticles.The characterization,minimum inhibitory concentration,and biofilm inhibition rate of the chitosan-silver nanoparticles were tested.A total of 40 SD rats were randomly divided into four groups.After routine adaptive feeding,the control group received intraperitoneal injection of normal saline;the model group received intraperitoneal injection of Pseudomonas aeruginosa suspension;the positive group received intraperitoneal injection of Pseudomonas aeruginosa suspension mixed with ampicillin at a volume ratio of 1∶1;the observation group received intraperitoneal injection of Pseudomonas aeruginosa suspension mixed with chitosan-silver nanoparticles(at minimum inhibitory concentration)at a volume ratio of 1∶1.Bacterial load,inflammatory factors,and liver and kidney function indicators in tissues were observed and compared among the four groups on the 3^(rd)day after treatment.Results:When the concentration of chitosansilver nanoparticles reached 8μg/mL or above,the OD value of the experimental wells was close to that of the control wells,indicating that 8μg/mL was the minimum inhibitory concentration of the chitosan-silver nanoparticles;at concentrations of 8μg/mL or above,the biofilm inhibition rate was greater than 80%.The bacterial load in the observation group was significantly lower than that in the model and positive groups(P<0.05).The expression levels of interleukin-6,interferon-γ,and tumor necrosis factor-αin the observation group were significantly lower than those in the model and positive groups(P<0.05).There were no statistically significant differences in alanine aminotransferase,aspartate aminotransferase,blood urea nitrogen,and creatinine levels among the four groups(P>0.05).Conclusion:The chitosan-silver nanoparticles targeting Pseudomonas aeruginosa biofilms constructed in this study exhibit good antibacterial effects against Pseudomonas aeruginosa and have good safety.