Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen...Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.展开更多
In bone tissue engineering microstructure design,adjusting the structural design of biomimetic bone scaffolds can provide distinct differentiation stimuli to cells on the scaffold surface.This study explored the biome...In bone tissue engineering microstructure design,adjusting the structural design of biomimetic bone scaffolds can provide distinct differentiation stimuli to cells on the scaffold surface.This study explored the biomechanical impacts of different biomimetic microstructures on advanced bone tissue engineering scaffolds.Two irregular bone scaffolds(homogeneous/radial gradient)based on the Voronoi tesselation algorithm and eight regular lattice scaffolds involving pillar body centered cubic,vintiles,diamond,and cube(homogeneous/radial gradient)with constant 80%porosity were constructed.Mechanical stimulation differentiation algorithms,finite element analysis,and computational fluid dynamics were used to investigate the effects of different pore structures on the octahedral shear strain and fluid flow shear stress within the scaffolds,thereby elucidating the differentiation capabilities of the five structural bone/cartilage cell types.The findings demonstrated that irregular structures and radial-gradient designs promoted osteogenic differentiation,whereas regular structures and homogeneous designs facilitated chondrogenic differentiation.The highest percentages of osteoblast and chondrocyte differentiation were observed in radial-gradient irregular scaffolds.This research provides insights into the microstructure design of bone tissue engineering implants.展开更多
基金the National Natural Science Foundation of China(No.52165026)。
文摘Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.
基金the National Natural Science Foundation of China(No.52165026)。
文摘In bone tissue engineering microstructure design,adjusting the structural design of biomimetic bone scaffolds can provide distinct differentiation stimuli to cells on the scaffold surface.This study explored the biomechanical impacts of different biomimetic microstructures on advanced bone tissue engineering scaffolds.Two irregular bone scaffolds(homogeneous/radial gradient)based on the Voronoi tesselation algorithm and eight regular lattice scaffolds involving pillar body centered cubic,vintiles,diamond,and cube(homogeneous/radial gradient)with constant 80%porosity were constructed.Mechanical stimulation differentiation algorithms,finite element analysis,and computational fluid dynamics were used to investigate the effects of different pore structures on the octahedral shear strain and fluid flow shear stress within the scaffolds,thereby elucidating the differentiation capabilities of the five structural bone/cartilage cell types.The findings demonstrated that irregular structures and radial-gradient designs promoted osteogenic differentiation,whereas regular structures and homogeneous designs facilitated chondrogenic differentiation.The highest percentages of osteoblast and chondrocyte differentiation were observed in radial-gradient irregular scaffolds.This research provides insights into the microstructure design of bone tissue engineering implants.