Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitiv...Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitive to both short daylength/Iow temperature and long daylength/high temperature. Five F2 populations derived from the crosses between 337S and five common wheat varieties were developed for genetic analysis. All Fl's were highly fertile while segregation occurred in the F2 populations with a ratio of 3 fertile:l sterile under short daylength/Iow temperature. It is shown that male sterility in 337S was controlled by a single recessive gene, temporarily designated as wptms3. Bulked segregant analysis (BSA) coupled with simple sequence repeat (SSR) markers was applied to map the sterile gene using one mapping population. The wptms3 gene was mapped to chromosome arm 1BS and flanked byXgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively. The accuracy and efficiency of marker-assisted selection were evaluated and proved essential for identifying homozygous recessive male sterile genotypes of the wptms3 gene in F2 generation.展开更多
Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS...Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pmsl(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F2 mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pmsl(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pmsl(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pmsl(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pmsl(t) gene itself.展开更多
基金supported by the National Basic Research Program (973) of China (Nos. 2007CB109006 and 2009CB118304)the National High-Tech R&D Program (863) of China (No. 2009AA101102)the National Natural Science Foundation of China (Nos. 30671291 and 30971777)
文摘Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitive to both short daylength/Iow temperature and long daylength/high temperature. Five F2 populations derived from the crosses between 337S and five common wheat varieties were developed for genetic analysis. All Fl's were highly fertile while segregation occurred in the F2 populations with a ratio of 3 fertile:l sterile under short daylength/Iow temperature. It is shown that male sterility in 337S was controlled by a single recessive gene, temporarily designated as wptms3. Bulked segregant analysis (BSA) coupled with simple sequence repeat (SSR) markers was applied to map the sterile gene using one mapping population. The wptms3 gene was mapped to chromosome arm 1BS and flanked byXgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively. The accuracy and efficiency of marker-assisted selection were evaluated and proved essential for identifying homozygous recessive male sterile genotypes of the wptms3 gene in F2 generation.
基金Project supported by the National Natural Science Foundation of China (No. 30571146)the Key Research Project of Zhejiang Province(No.2003C22007)the Rice Project of Zhejiang Province (No.04-06),China
文摘Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pmsl(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F2 mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pmsl(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pmsl(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pmsl(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pmsl(t) gene itself.