Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti...Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.展开更多
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa...While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.展开更多
基金supported by the National Natural Science Foundation of China(No.52070057)China Postdoctoral Science Foundation(No.2023M730855)Heilongjiang Postdoctoral Fund(No.LBH-Z22183)for financial support。
文摘Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.
基金supported by National Key Research and Development Program of China(2022YFB3804902,2022YFB3804900)the National Natural Science Foundation of China(52203226,52161145406,42376045)the Fundamental Research Funds for the Central Universities(2232024Y-01,2232025D-02).
文摘While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.