The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to...The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.展开更多
0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide down...0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).展开更多
The complex plate collision process led the South Yellow Sea Basin(SYSB)to go through an intensity tectonic inversion during the Early Cenozoic,leading to a regional unconformity surface development.As a petroliferous...The complex plate collision process led the South Yellow Sea Basin(SYSB)to go through an intensity tectonic inversion during the Early Cenozoic,leading to a regional unconformity surface development.As a petroliferous basin,SYSB saw intense denudation and deposition processes,making it hard to characterize their source-to-sink system(S2S),and this study provided a new way to reveal them quantitatively.According to the seismic interpretation,it was found that two types of tectonic inversion led to the strata shortening process,which was classified according to their difference in planar movements:dip-slip faults and strike-slip ones.As for dip-slip faults,the inversion structure was primarily formed by the dip-slip movement,and many fault-related folds developed,which developed in the North Depression Zone of the SYSB.The strike-slip ones,accompanied by some negative flower structures,dominate the South Depression Zone of the SYSB.To reveal its source-to-sink(S2S)system in the tectonic inversion basin,we rebuild the provenance area with detrital zircon U-Pb data and heavy mineral assemblage.The results show,during the Eocene(tectonic inversion stage),the proximal slump or fan delta from the Central Uplift Zone was prominently developed in the North Depression Zone,and the South Depression Zone is filled by sediments from the proximal area(Central Uplift Zone in SYSB and Wunansha Uplift)and the prograding delta long-axis parallel to the boundary faults.Then,calculations were conducted on the coarse sediment content,fault displacements,catchment relief,sediment migration distance,and discussions about the impact factors of the S2S system developed in various strata shortening patterns with a statistical method.It was found that,within the dip-slip faults-dominated zone,the volume of the sediment routing system and the ratio of coarse-grained sediments merely have a relationship with the amount of sediment supply and average faults break displacement.Compared with the strike-slip faults-dominated zone,the source-to-sink system shows a lower level of sandy sediment influx,and its coarse-grained content is mainly determined by the average faults broken displacement.展开更多
The Yangtze Plate(YP)and the North China Plate(NCP)are key components of the East Asian continent,and their collision significantly influences the tectonic evolution of the eastern Asian continental margin.As the Sout...The Yangtze Plate(YP)and the North China Plate(NCP)are key components of the East Asian continent,and their collision significantly influences the tectonic evolution of the eastern Asian continental margin.As the South Yellow Sea is located at the convergence of these plates,it becomes a pivotal area for understanding the tectonic evolution of East Asia.The characteristics and provenance of clastic rocks of the Middle Permian-the Early Triassic were analyzed and the strata in the Central Uplift including the Qinglong Formation(T_(1)q)and Talung Formation(P_(3)d),consisting of various mudstones and sandstones,were anatomized.Results show that quartz and feldspar are the main diagenetic minerals,while illite and chlorite show signs of secondary alterations.Geochemical imprints indicate a gradual shift in provenance from ancient sedimentary and mafic igneous rocks to intermediate igneous rocks.In the meantime,the tectonic background transformed from continent to continental island arc from the Middle Permian to the Early Triassic.Therefore,we inferred that a soft collision between the North China Plate and the Yangtze Plate likely occurred during the Late Permian,resulted in intensified collision between two plates in the Early Triassic,and shaped the South Yellow Sea.This study provided valuable information on the timing of plate collisions in the South Yellow Sea.展开更多
Magmatism at continental margins is of great significance in understanding the continental rifting.We present a twodimensional P-wave velocity model derived from an ocean bottom seismometer experiment,conducted across...Magmatism at continental margins is of great significance in understanding the continental rifting.We present a twodimensional P-wave velocity model derived from an ocean bottom seismometer experiment,conducted across the middle northern continental margin of the South China Sea(SCS).The detailed velocity structures reveal significant heterogeneities extending from the continental shelf to the continent-ocean transition zone.The crust exhibits its greatest thickness below the continental shelf,measuring~23 km and gradually thins to~13 km at the distal margin.Furthermore,a narrow and distinct continent-ocean transition with only 40-km width is revealed.We also observe a high-velocity layer within the transition zone,reaching thickness of up to 4 km,characterized by P-wave velocities ranging from 7.0 km/s to 7.6 km/s in the lower crust.Based on the syn-rift melt generation using decompression melting model,we ascertain that syn-rift magmatism cannot fully account for the observed thick high-velocity layer.By integrating findings from previous geophysical and geochemical studies presenting extensive volcanic edifice on the seafloor at the northern margin,as well as ocean-island-basalt-type magmaticsamples in the SCS area,we propose that post-rifting magmatism associated with the Hainan Plume may have influenced theformation of the high-velocity lower crust within the transition zone and the northern margin of the SCS can thus be recognizedas magma-poor type margin.展开更多
地球科学不断发展之际,多源地球物理数据融合这项技术在海洋地质研究领域所起的作用愈发关键。该技术把来源各异、类型不同的地球物理数据,像是地震方面的数据、重力相关的数据、磁力相关的数据以及卫星遥感数据等整合到一起,由此让人...地球科学不断发展之际,多源地球物理数据融合这项技术在海洋地质研究领域所起的作用愈发关键。该技术把来源各异、类型不同的地球物理数据,像是地震方面的数据、重力相关的数据、磁力相关的数据以及卫星遥感数据等整合到一起,由此让人们对海洋地质的结构以及相关过程的理解程度得以提升。本文会对多源数据融合技术在海洋地质研究中的具体应用展开探讨,涉及数据预处理、融合的方法,还有其在海底地形、沉积物分布、构造活动以及资源勘探等诸多方面的实际应用案例等内容。With the continuous development of Geoscience, the technology of multi-source geophysical data fusion plays an increasingly key role in the field of marine geological research. This technology integrates geophysical data from different sources and types, such as seismic data, gravity related data, magnetic related data and satellite remote sensing data, so as to improve people’s understanding of the structure of Marine Geology and related processes. This paper will discuss the specific application of multi-source data fusion technology in marine geological research, including the methods of data preprocessing and fusion, as well as its practical application cases in seabed topography, sediment distribution, tectonic activities and resource exploration.展开更多
基金supported by PRIN 2020 project(Resp.Michele Marroni)Claudia D’Oriano(INGV)Matteo Masotta and Danis Filimon(Earth Science Dept)are also thanked for analytical support in the laboratoriesThis work benefited from the PRA 2022 project handled by Francesca Meneghini.
文摘The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.
基金supported by the National Natural Science Foundation of China(Nos.42090054,42377192)the Scientific Research Project of Power China Huadong Engineering Corporation Limited(No.KY2022-KC-02-02)the Natural Science Foundation of Hubei Province,China(No.2022CFA002)。
文摘0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).
基金sponsored by the National Natural Science Foundation of China-Youth Science Fund(No.42402150)the Major State Science and Technology Research Program(No.2016ZX05024002-002)the Chinese Scholarship Council(CSC)。
文摘The complex plate collision process led the South Yellow Sea Basin(SYSB)to go through an intensity tectonic inversion during the Early Cenozoic,leading to a regional unconformity surface development.As a petroliferous basin,SYSB saw intense denudation and deposition processes,making it hard to characterize their source-to-sink system(S2S),and this study provided a new way to reveal them quantitatively.According to the seismic interpretation,it was found that two types of tectonic inversion led to the strata shortening process,which was classified according to their difference in planar movements:dip-slip faults and strike-slip ones.As for dip-slip faults,the inversion structure was primarily formed by the dip-slip movement,and many fault-related folds developed,which developed in the North Depression Zone of the SYSB.The strike-slip ones,accompanied by some negative flower structures,dominate the South Depression Zone of the SYSB.To reveal its source-to-sink(S2S)system in the tectonic inversion basin,we rebuild the provenance area with detrital zircon U-Pb data and heavy mineral assemblage.The results show,during the Eocene(tectonic inversion stage),the proximal slump or fan delta from the Central Uplift Zone was prominently developed in the North Depression Zone,and the South Depression Zone is filled by sediments from the proximal area(Central Uplift Zone in SYSB and Wunansha Uplift)and the prograding delta long-axis parallel to the boundary faults.Then,calculations were conducted on the coarse sediment content,fault displacements,catchment relief,sediment migration distance,and discussions about the impact factors of the S2S system developed in various strata shortening patterns with a statistical method.It was found that,within the dip-slip faults-dominated zone,the volume of the sediment routing system and the ratio of coarse-grained sediments merely have a relationship with the amount of sediment supply and average faults break displacement.Compared with the strike-slip faults-dominated zone,the source-to-sink system shows a lower level of sandy sediment influx,and its coarse-grained content is mainly determined by the average faults broken displacement.
基金Supported by the National Natural Science Foundation of China(No.U 2344221)。
文摘The Yangtze Plate(YP)and the North China Plate(NCP)are key components of the East Asian continent,and their collision significantly influences the tectonic evolution of the eastern Asian continental margin.As the South Yellow Sea is located at the convergence of these plates,it becomes a pivotal area for understanding the tectonic evolution of East Asia.The characteristics and provenance of clastic rocks of the Middle Permian-the Early Triassic were analyzed and the strata in the Central Uplift including the Qinglong Formation(T_(1)q)and Talung Formation(P_(3)d),consisting of various mudstones and sandstones,were anatomized.Results show that quartz and feldspar are the main diagenetic minerals,while illite and chlorite show signs of secondary alterations.Geochemical imprints indicate a gradual shift in provenance from ancient sedimentary and mafic igneous rocks to intermediate igneous rocks.In the meantime,the tectonic background transformed from continent to continental island arc from the Middle Permian to the Early Triassic.Therefore,we inferred that a soft collision between the North China Plate and the Yangtze Plate likely occurred during the Late Permian,resulted in intensified collision between two plates in the Early Triassic,and shaped the South Yellow Sea.This study provided valuable information on the timing of plate collisions in the South Yellow Sea.
基金supported by the Guangdong Pearl River Talent Program(No.017TZ07Z066)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0701)+4 种基金the Southern Marine Laboratory(Zhuhai)Innovative R&D Program(No.311021003)the National Natural Science Foundation of China(No.42106067)the Natural Science Foundation of Guangdong Province,China(No.2022A1515010090)Shanghai Sheshan National Geophysical Observatory(No.SSOP202102)Guangzhou Science and Technology Planning Project(No.202102020456).
文摘Magmatism at continental margins is of great significance in understanding the continental rifting.We present a twodimensional P-wave velocity model derived from an ocean bottom seismometer experiment,conducted across the middle northern continental margin of the South China Sea(SCS).The detailed velocity structures reveal significant heterogeneities extending from the continental shelf to the continent-ocean transition zone.The crust exhibits its greatest thickness below the continental shelf,measuring~23 km and gradually thins to~13 km at the distal margin.Furthermore,a narrow and distinct continent-ocean transition with only 40-km width is revealed.We also observe a high-velocity layer within the transition zone,reaching thickness of up to 4 km,characterized by P-wave velocities ranging from 7.0 km/s to 7.6 km/s in the lower crust.Based on the syn-rift melt generation using decompression melting model,we ascertain that syn-rift magmatism cannot fully account for the observed thick high-velocity layer.By integrating findings from previous geophysical and geochemical studies presenting extensive volcanic edifice on the seafloor at the northern margin,as well as ocean-island-basalt-type magmaticsamples in the SCS area,we propose that post-rifting magmatism associated with the Hainan Plume may have influenced theformation of the high-velocity lower crust within the transition zone and the northern margin of the SCS can thus be recognizedas magma-poor type margin.
文摘地球科学不断发展之际,多源地球物理数据融合这项技术在海洋地质研究领域所起的作用愈发关键。该技术把来源各异、类型不同的地球物理数据,像是地震方面的数据、重力相关的数据、磁力相关的数据以及卫星遥感数据等整合到一起,由此让人们对海洋地质的结构以及相关过程的理解程度得以提升。本文会对多源数据融合技术在海洋地质研究中的具体应用展开探讨,涉及数据预处理、融合的方法,还有其在海底地形、沉积物分布、构造活动以及资源勘探等诸多方面的实际应用案例等内容。With the continuous development of Geoscience, the technology of multi-source geophysical data fusion plays an increasingly key role in the field of marine geological research. This technology integrates geophysical data from different sources and types, such as seismic data, gravity related data, magnetic related data and satellite remote sensing data, so as to improve people’s understanding of the structure of Marine Geology and related processes. This paper will discuss the specific application of multi-source data fusion technology in marine geological research, including the methods of data preprocessing and fusion, as well as its practical application cases in seabed topography, sediment distribution, tectonic activities and resource exploration.