期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
A Nonlinear Theory and Technology for Reducing the Uncertainty of High-Impact Ocean-Atmosphere Event Prediction 被引量:2
1
作者 Mu MU Wansuo DUAN 《Advances in Atmospheric Sciences》 2025年第10期1981-1995,共15页
In this article,our nonlinear theory and technology for reducing the uncertainties of high-impact ocean‒atmosphere event predictions,with the conditional nonlinear optimal perturbation(CNOP)method as its core,are revi... In this article,our nonlinear theory and technology for reducing the uncertainties of high-impact ocean‒atmosphere event predictions,with the conditional nonlinear optimal perturbation(CNOP)method as its core,are reviewed,and the“spring predictability barrier”problem for El Nino‒Southern Oscillation events and targeted observation issues for tropical cyclone forecasts are taken as two representative examples.Nonlinear theory reveals that initial errors of particular spatial structures,environmental conditions,and nonlinear processes contribute to significant prediction errors,whereas nonlinear technology provides a pioneering approach for reducing observational and forecast errors via targeted observations through the application of the CNOP method.Follow-up research further validates the scientific rigor of the theory in revealing the nonlinear mechanism of significant prediction errors,and relevant practical field campaigns for targeted observations verify the effectiveness of the technology in reducing prediction uncertainties.The CNOP method has achieved international recognition;furthermore,its applications further extend to ensemble forecasts for weather and climate and further enrich the nonlinear technology for reducing prediction uncertainties.It is expected that this nonlinear theory and technology will play a considerably important role in reducing prediction uncertainties for high-impact weather and climate events. 展开更多
关键词 PREDICTABILITY optimal perturbation error growth targeted observation ensemble forecast
在线阅读 下载PDF
Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean
2
作者 Tiantian Tang Jiaying He +1 位作者 Huihang Sun Jingjia Luo 《Atmospheric and Oceanic Science Letters》 2025年第1期24-31,共8页
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em... A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms. 展开更多
关键词 Seasonal forecast Ocean data assimilation Marine heatwave Subsurface temperature
在线阅读 下载PDF
台风“暹芭”登陆后北折路径成因及诊断分析
3
作者 周云霞 翟丽萍 +2 位作者 覃皓 黄晴 祁丽燕 《热带海洋学报》 北大核心 2025年第4期67-76,共10页
2022年第4号台风“暹芭”在7月2日夜间进入广西后出现突然北折路径,导致风雨预报出现显著偏差,对台风防御工作造成重大影响。本文利用高空、地面、卫星等多源气象观测资料以及欧洲中期天气预报中心(European Centre for Medium-range We... 2022年第4号台风“暹芭”在7月2日夜间进入广西后出现突然北折路径,导致风雨预报出现显著偏差,对台风防御工作造成重大影响。本文利用高空、地面、卫星等多源气象观测资料以及欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)提供的第5代再分析资料(ECMWF re-analysis 5,ERA5),采用天气学诊断方法对台风路径北折的成因进行深入分析,并运用位涡倾向方程进行定量诊断。结果表明:(1)“暹芭”台风路径北折是大尺度环流形势变化导致的深层引导气流改变与台风内部非对称结构变化共同作用的结果;(2)深层引导气流在路径转折中起主导作用,西太平洋副热带高压的西伸加强、高空西风槽前和南亚高压单体西北侧的西南气流与台风北向出流的相互作用是引导气流改变的关键驱动因素;同时正涡度平流的变化对“暹芭”台风路径北折具有指示性意义;(3)“暹芭”台风呈现非对称结构特征,其内部垂直运动所引发的积云对流对台风北折有重要影响,台风云系形态变化也为台风移向的转折提供指示;(4)位涡倾向方程定量诊断进一步表明,台风在南海移动期间主要受外部大尺度环流形成的引导气流影响,而台风进入内陆后突然北折则是引导气流和台风非对称结构引发垂直运动共同作用的结果;此外“暹芭”台风具有趋向于位势倾向正值中心移动特征。 展开更多
关键词 台风路径北折 引导气流 台风非对称结构 位涡倾向方程
在线阅读 下载PDF
渤海一次海上强风过程的成因及预报服务难点分析
4
作者 节江涛 窦慧敏 +1 位作者 王佳希 孙思远 《海洋预报》 北大核心 2025年第5期63-72,共10页
利用常规站点观测资料、ERA5逐小时再分析资料、天气雷达拼图组网组合反射率产品和中国气象局中尺度天气数值预报系统(CMA-MESO)预报产品对2024年6月13—14日渤海一次海上强风天气过程成因进行分析,并讨论预报服务难点。结果表明:源于... 利用常规站点观测资料、ERA5逐小时再分析资料、天气雷达拼图组网组合反射率产品和中国气象局中尺度天气数值预报系统(CMA-MESO)预报产品对2024年6月13—14日渤海一次海上强风天气过程成因进行分析,并讨论预报服务难点。结果表明:源于贝加尔湖附近的500 hPa高空冷涡在本次过程前2~3天开始发展并缓慢东移,于13日移入东北地区,冷涡后部冷空气南下,配合低层切变系统和暖湿背景,于13日午后触发中尺度对流系统,对流系统在19—20时移至渤海海域,导致了局地10~12级强风过程。以黄骅港保税区站(B2776)为例,低层风速辐合形成强上升运动,上冷下暖湿层结有利于触发不稳定能量释放,K指数较大,其主要贡献项为垂直温度递减率;此外,中层水汽饱和程度的时间变化与K指数变化有很好的对应关系,较好的热力和动力条件是本次雷暴大风发生发展的基础。CMA-MESO能提前2~3天指示本次渤海海域的强风过程,为做好港口海洋气象预报服务提供了重要参考,但在大风极值的预报中仍存在一定局限性。 展开更多
关键词 渤海 大气环流 数值预报 港口气象服务
在线阅读 下载PDF
Ensemble-Based Adaptive Observations for Improving Sea Fog Prediction in Coastal Regions around the Bohai Sea:Case Study with Cold-Front Synoptic Pattern
5
作者 Huiqin HU Chengqing RUAN Xiaolin YU 《Advances in Atmospheric Sciences》 2025年第4期794-815,共22页
This study explored the observation strategy and effectiveness of synoptic-scale adaptive observations for improving sea fog prediction in coastal regions around the Bohai Sea based on a poorly predicted fog event wit... This study explored the observation strategy and effectiveness of synoptic-scale adaptive observations for improving sea fog prediction in coastal regions around the Bohai Sea based on a poorly predicted fog event with cold-front synoptic pattern(CFSP).An ensemble Kalman filter data assimilation system for the Weather Research and Forecasting model was adopted with ensemble sensitivity analysis(ESA).By comparing observation impacts(estimated from a 40-member ensemble with ESA)among different meteorological observation variables and pressure levels,the temperature at 850 hPa and surface layer(850 hPa-and-surface temperature)was selected as the target observation type.Additionally,the area with large observation impacts for this observation type was predicted in the transition region of the surface low–high system.This area developed southward with the low and moved eastward with the low–high system,which could be explained by the main features of CFSP.Moreover,both experiments assimilating synthetic and real observations showed that assimilating 850 hPa-and-surface temperature observations generally yielded better fog coverage forecasts in areas with greater observation impacts than areas with smaller impacts.However,the effectiveness of adaptive observations was reduced when real observations rather than synthetic observations were assimilated,which is possibly due to factors such as observation and model errors.The main conclusions above were verified by another typical fog event with CFSP characteristics.Results of this study highlight the importance of improved initial conditions in the transition region of the low–high system for improving fog prediction and provide scientific guidance for implementing an observation network for fog forecasting over the Bohai Sea. 展开更多
关键词 sea fog forecasting synoptic-scale adaptive observations ESA method observations of temperature profile below 850 hPa cold-front synoptic pattern
在线阅读 下载PDF
Study of the potential predictability of ENSO with different phases and intensities in the CESM
6
作者 Le Zhang Ting Liu Dake Chen 《Acta Oceanologica Sinica》 2025年第8期1-9,共9页
The inherent asymmetry and diversity of the El Niño-Southern Oscillation(ENSO)pose substantial challenges to its prediction.Potential predictability measures the upper limit of predictability for a certain event.... The inherent asymmetry and diversity of the El Niño-Southern Oscillation(ENSO)pose substantial challenges to its prediction.Potential predictability measures the upper limit of predictability for a certain event.Assessing the potential predictability of ENSO across varying phases and intensities with sophisticated climate models is crucial for understanding the upper limits of forecasting capabilities and identifying room for future enhancement.Based on the hindcast dataset with a recently developed ensemble forecasting system(the community earth system model,CESM),this study comprehensively investigates potential predictability for ENSO across different phases and intensities.The findings reveal that La Niña events possess higher potential predictability relative to their El Niño counterparts.Strong events exhibit significantly higher potential predictability than weak events within the same phase.The potential predictability of distinct ENSO types is primarily influenced by the seasonal variation inherent to their predictability.Regardless of the event classification,the potential predictability is characterized by a rapid decline from spring onwards,with the apex of this decline occurring in summer.The intensity of the seasonal predictability barrier inversely correlates with the upper limit of potential predictability.Specifically,a weaker(stronger)seasonal barrier is associated with a higher(lower)potential predictability.In addition,there is significant interdecadal variability both in the predictability of warm and cold ENSO events.The potential predictability for La Niña events decreases more slowly with increasing lead months,particularly in recent decades,resulting in an overall higher upper limit of potential predictability for La Niña events than for El Niño events over the past century.Nevertheless,El Niño events have also maintained a high potential predictability.This suggests substantial potential for improvement in future prediction for both. 展开更多
关键词 El Niño La Niña potential predictability forecast barriers INTERDECADAL
在线阅读 下载PDF
Forecasting of Sea-Surface Wind Speed Using Deep-Learning Method Based on Multidimensional Frequency-Domain Feature Fusion
7
作者 HE Jiaru DENG Zengan 《Journal of Ocean University of China》 2025年第5期1256-1268,共13页
Sea-surface wind is a vital meteorological element in marine activities and climate research.This study proposed the spectral attention enhanced multidimensional feature fusion convolutional long short-term memory(LST... Sea-surface wind is a vital meteorological element in marine activities and climate research.This study proposed the spectral attention enhanced multidimensional feature fusion convolutional long short-term memory(LSTM)network(SAMFF-Conv-LSTM),a novel approach for sea-surface wind-speed prediction that emphasizes the temporal characteristics of data samples.The model incorporates the Fourier transform to extract time-and frequency-domain features from wave and wind variables.For the 12 h prediction,the SAMFF-ConvLSTM achieved a correlation coefficient of 0.960 and a root mean square error(RMSE)of 1.350 m/s,implying a high prediction accuracy.For the 24 h prediction,the RMSE of the SAMFF-ConvLSTM was reduced by 38.11%,14.26%,and 13.36%compared with those of the convolutional neural network,gated recurrent units,and convolutional LSTM(ConvLSTM),respectively.These results confirm the superior reliability and accuracy of the SAMFF-ConvLSTM over traditional models in theoretical and practical applications. 展开更多
关键词 wind speed spatiotemporal sequence prediction WAVES frequency domain
在线阅读 下载PDF
A deep residual intelligent model for ENSO prediction by incorporating coupled model forecast data
8
作者 Chunyang Song Xuefeng Zhang +3 位作者 Xingrong Chen Hua Jiang Liang Zhang Yongyong Huang 《Acta Oceanologica Sinica》 2025年第8期133-142,共10页
The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes... The El Niño-Southern Oscillation(ENSO)is a naturally recurring interannual climate fluctuation that affects the global climate system.The advent of deep learning-based approaches has led to transformative changes in ENSO forecasts,resulting in significant progress.Most deep learning-based ENSO prediction models which primarily rely solely on reanalysis data may lead to challenges in intensity underestimation in long-term forecasts,reducing the forecasting skills.To this end,we propose a deep residual-coupled model prediction(Res-CMP)model,which integrates historical reanalysis data and coupled model forecast data for multiyear ENSO prediction.The Res-CMP model is designed as a lightweight model that leverages only short-term reanalysis data and nudging assimilation prediction results of the Community Earth System Model(CESM)for effective prediction of the Niño 3.4 index.We also developed a transfer learning strategy for this model to overcome the limitations of inadequate forecast data.After determining the optimal configuration,which included selecting a suitable transfer learning rate during training,along with input variables and CESM forecast lengths,Res-CMP demonstrated a high correlation ability for 19-month lead time predictions(correlation coefficients exceeding 0.5).The Res-CMP model also alleviated the spring predictability barrier(SPB).When validated against actual ENSO events,Res-CMP successfully captured the temporal evolution of the Niño 3.4 index during La Niña events(1998/99 and 2020/21)and El Niño events(2009/10 and 2015/16).Our proposed model has the potential to further enhance ENSO prediction performance by using coupled models to assist deep learning methods. 展开更多
关键词 ENSO prediction deep learning dynamical coupled model data incorporating
在线阅读 下载PDF
Construction of multi-model ensemble prediction for ENSO based on neural network
9
作者 Yuan Ou Ting Liu Tao Lian 《Acta Oceanologica Sinica》 2025年第8期10-19,共10页
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana... In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) multi-model ensemble mean neural network
在线阅读 下载PDF
A regional ocean–atmosphere coupled model using CMA-TRAMS and LICOM: Preliminary results for tropical cyclone gale prediction over the northern South China Sea
10
作者 Ling Huang Chunxia Liu +1 位作者 Yongqiang Yu Liwei Zou 《Atmospheric and Oceanic Science Letters》 2025年第2期58-62,共5页
This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and o... This paper provides a comparative analysis of the performance of a high-resolution regional ocean-atmosphere coupled model in predicting tropical cyclone(TC)gales over the northern South China Sea.The atmosphere and ocean components of the coupled system are represented by the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS)and the LASG/IAP Climate system Ocean Model(LICOM),respectively.The Ocean Atmosphere Sea Ice Soil VersionH 3(OASIS3)software has been utilized for the exchange of momentum,heat,and freshwater fluxes between these two components.An assessment of the coupled model’s three-day predictions for five TCs’gales was conducted.Preliminary findings indicate that the predicted TC tracks show less sensitivity to oceanic influences than the predicted TC intensities.Significant improvement in predicting the surface TC gales has been achieved through coupling the ocean model.This improvement is attributed to the impact of the warmer ocean’s effect on TC intensification,counteracting the cooling effect of the cold wake.In summary,coupling has enhanced the model’s predictive capabilities for TC gales.A detailed assessment of the coupled model’s performance in predicting other tropical weather phenomena is forthcoming. 展开更多
关键词 TC gales Regional coupled ocean-atmosphere model Northern South China Sea
在线阅读 下载PDF
区域耦合预报系统的中国近海海面风场预报检验评估
11
作者 张可睿 李响 +2 位作者 张蕴斐 龙上敏 陈幸荣 《海洋预报》 CSCD 北大核心 2024年第6期1-12,共12页
利用中国近海浮标观测数据检验评估了国家海洋环境预报中心开发的西北太平洋区域耦合数值预报系统的海面风场预报结果。结果表明:耦合系统对中国近海海域10 m风场的预报性能较好,预报风速与浮标观测风速具有较高的一致性,24 h风速预报... 利用中国近海浮标观测数据检验评估了国家海洋环境预报中心开发的西北太平洋区域耦合数值预报系统的海面风场预报结果。结果表明:耦合系统对中国近海海域10 m风场的预报性能较好,预报风速与浮标观测风速具有较高的一致性,24 h风速预报绝对误差小于1.5 m/s,系统的预报性能随着预报时效的延长而降低;系统的预报性能在不同海域存在差异,东海区域的预报风速与观测风速最为接近,南海区域两者的相关性最好,但是随着预报时效延长,预报偏差的离散程度变大,预报性能降低;24 h风场的预报性能在不同风级下存在差异,4~6级风速区间的预报性能较好,风速较大时风向的预报性能较好;耦合系统在不同月份的预报性能也存在差异,其中冬季相对较好,夏季较差。 展开更多
关键词 区域耦合预报系统 海面风场 检验评估 中国近海
在线阅读 下载PDF
基于机器学习的热带气旋快速增强预报
12
作者 罗通 洪加诚 《海洋学研究》 CSCD 北大核心 2024年第3期99-107,共9页
极深对流云是热带气旋(tropical cyclone,TC)快速增强的前兆,为预报西北太平洋TC快速增强,该研究开发了一种使用极深对流云相关数据的机器学习模型。该机器学习模型整合了飓风强度统计预报快速增强指数(Statistical Hurricane Intensity... 极深对流云是热带气旋(tropical cyclone,TC)快速增强的前兆,为预报西北太平洋TC快速增强,该研究开发了一种使用极深对流云相关数据的机器学习模型。该机器学习模型整合了飓风强度统计预报快速增强指数(Statistical Hurricane Intensity Prediction Scheme-Rapid Intensification Index,SHIPS-RII)数据与TC中心300 km半径范围内极深对流云的覆盖面积。基于2011—2019年的数据,对24 h内TC增强超过30 kn和35 kn的快速增强事件分别进行了预报,相较于仅使用SHIPS-RII数据的模型,该机器学习模型在皮尔斯技能得分(PSS)方面分别提升了5.66%和9.58%,在检测概率指标(POD)方面分别提升了8.41%和8.55%。用该模型对典型台风杜鹃(Dujuan,2015)进行预报,其结果证明整合了极深对流云覆盖面积的模型在快速增强预报中具有优势,主要体现在TC初始强度较强时发生的快速增强预报。该模型对于强台风的预报具有较大的应用潜力。 展开更多
关键词 西北太平洋 热带气旋 快速增强 云顶红外亮温(IR BT) 极深对流云 机器学习 台风杜鹃(Dujuan 2015) TC初始强度
在线阅读 下载PDF
中国全球业务化海洋学预报系统的发展和应用 被引量:38
13
作者 王辉 万莉颖 +12 位作者 秦英豪 王毅 杨学联 刘洋 邢建勇 陈莉 王彰贵 仉天宇 刘桂梅 杨清华 吴湘玉 刘钦燕 王东晓 《地球科学进展》 CAS CSCD 北大核心 2016年第10期1090-1104,共15页
中国全球业务化海洋学预报系统是国家海洋环境预报中心在国内首次构建的全球—大洋—近海3级嵌套的全球业务化海洋学预报系统体系,系统稳定高效业务运行,通过多种方式实时提供和发布全球多尺度多要素的海流、海浪、海温、海冰、海面风... 中国全球业务化海洋学预报系统是国家海洋环境预报中心在国内首次构建的全球—大洋—近海3级嵌套的全球业务化海洋学预报系统体系,系统稳定高效业务运行,通过多种方式实时提供和发布全球多尺度多要素的海流、海浪、海温、海冰、海面风场等预报产品,实现了全球海域范围内从百公里级到公里级空间分辨率的一体化预报业务全覆盖。全球业务化海洋学预报系统从全球尺度、大洋尺度到中国周边海域包括8个子系统:全球海面风场数值预报子系统、全球海洋环流数值预报子系统、全球海浪数值预报子系统、全球潮汐潮流数值预报子系统、印度洋海域海洋环境数值预报子系统、极地海冰数值预报子系统、中国周边海域精细化海洋环境数值预报子系统、全球海洋环境预报业务化集成支撑子系统。该系统紧密结合我国经济社会发展和军事保障需求,在"雪龙号"极地遇险脱困预报保障、马航MH370失联飞机搜救预报保障、"蛟龙号"多次深潜海试预报保障、日本福岛"3.11"地震海啸核泄漏影响评估等重大事件的预报保障任务中发挥了至关重要的作用,为我国实施海洋强国战略,维护国家海洋权益、保障涉海安全生产、应对海上突发事件等提供有力的科技支撑。 展开更多
关键词 业务化海洋学 全球海洋预报 业务化应用 三级嵌套 资料同化
原文传递
全球海温距平对月预报影响的数值试验 被引量:9
14
作者 骆美霞 纪立人 +3 位作者 张道民 李金龙 游荣高 ArnaldoLonghetto 《大气科学》 CSCD 北大核心 1997年第5期552-556,共5页
对1992年7月19日个例,进行了有、无海温距平的对比数值试验,研究了海温距平对月预报的影响。个例试验结果表明,海温距平对月预报的影响是重要的。海温距平不仅对全球降水量的影响明显,而且对温度场预报的影响也很明显。大气... 对1992年7月19日个例,进行了有、无海温距平的对比数值试验,研究了海温距平对月预报的影响。个例试验结果表明,海温距平对月预报的影响是重要的。海温距平不仅对全球降水量的影响明显,而且对温度场预报的影响也很明显。大气(温度、降水和高度场)对异常海温强迫开始响应的时间大约是10天。 展开更多
关键词 月预报 海温距平 数值试验 温度预报
在线阅读 下载PDF
中尺度大气模式MM5简介 被引量:36
15
作者 张金善 钟中 黄瑾 《海洋预报》 2005年第1期31-40,共10页
本文介绍了中尺度非静力大气模式 MM5 的动力框架、模式物理过程计算和参数化方法以及模式系统流程。
关键词 中尺度非静力大气模式 MM5 动力框架 模式物理过程 参数化 模式系统流程
在线阅读 下载PDF
海洋可预报性和集合预报研究综述 被引量:17
16
作者 王辉 刘娜 +1 位作者 李本霞 李响 《地球科学进展》 CAS CSCD 北大核心 2014年第11期1212-1225,共14页
海洋是高度复杂的非线性动力系统,由于海洋初值和数值模式本身存在无法避免的误差,海洋数值预报具有不确定性。通过理解和认识海洋不同时空尺度运动的特征和规律,定量估计和预测海洋动力系统的可预报性,研究预报误差产生的原因及其增长... 海洋是高度复杂的非线性动力系统,由于海洋初值和数值模式本身存在无法避免的误差,海洋数值预报具有不确定性。通过理解和认识海洋不同时空尺度运动的特征和规律,定量估计和预测海洋动力系统的可预报性,研究预报误差产生的原因及其增长和传播机制,探讨减小预报误差的方法和延长可预报时限的途径,对于改进海洋预报系统、提高预报技巧,具有重要意义。系统回顾了海洋可预报性及其应用的研究进展,论述了海洋可预报性的概念、分类以及国内外的研究现状,其中重点介绍了常用的奇异向量法、李亚普诺夫指数法和繁殖向量法等3种动力学方法以及海洋集合预报研究现状,最后对海洋可预报性的未来发展方向和应用前景给以展望。 展开更多
关键词 海洋预报 可预报性 预报不确定性
原文传递
一个可供ENSO预测的海气耦合环流模式及1997/1998ENSO的预测 被引量:43
17
作者 周广庆 李旭 曾庆存 《气候与环境研究》 CSCD 1998年第4期62-70,共9页
利用中国科学院大气物理研究所设计发展的具有较高分辨率的热带太平洋和全球大气耦合环流模式,设计了一个初始化方案,建立了ENSO预测系统,进行了系统性的预测试验。预测结果检验评估表明,该预测系统表现出较强的预报能力,赤道... 利用中国科学院大气物理研究所设计发展的具有较高分辨率的热带太平洋和全球大气耦合环流模式,设计了一个初始化方案,建立了ENSO预测系统,进行了系统性的预测试验。预测结果检验评估表明,该预测系统表现出较强的预报能力,赤道中东太平洋地区(Nino3和Nino34)海表温度距平预报相关技巧高于052的预报可持续18个月,该预测系统可应用到试验性的海温预测实践中。利用该系统对1997/1998年ENSO进行了实际预测,表明预测是成功的,预测的海温距平已提供给今年我国夏季降水预测使用,取得了良好的预测效果。 展开更多
关键词 海气耦合环流模式 初始化 ENSO预测 1997/1998ENSO
在线阅读 下载PDF
福建省沿海冬半年东北大风的数值预报释用方法研究 被引量:9
18
作者 曾瑾瑜 刘爱鸣 +2 位作者 高珊 冷典颂 吴幸毓 《海洋预报》 2015年第5期61-68,共8页
基于福建省冬半年沿海32个自动站的极大风观测资料和WRF、EC细网格以及T639 3种模式预报的10 m风场资料,将模式预报的风速与观测资料进行对比分析,结果表明:WRF和EC细网格的预报效果较好,有可参考性,T639可参考性不高。模式预报结果相... 基于福建省冬半年沿海32个自动站的极大风观测资料和WRF、EC细网格以及T639 3种模式预报的10 m风场资料,将模式预报的风速与观测资料进行对比分析,结果表明:WRF和EC细网格的预报效果较好,有可参考性,T639可参考性不高。模式预报结果相比实况极大风速偏小,预报平均绝对误差由沿海向内陆逐渐减小,由中部向南北逐渐减小。择取预报效果较好的WRF和EC细网格模式,对沿海代表站点进行风速集成,建立集成预报方程,并进行集成订正。误差订正后,与误差较小的WRF模式相比,预报准确率提高了10%左右,改善效果显著,为提高福建省沿海冬半年东北大风的预报准确率提供定量的预报方法。 展开更多
关键词 WRF EC T639 绝对误差 准确率 集成订正
在线阅读 下载PDF
山东精细化海区风的MOS预报方法研究 被引量:18
19
作者 荣艳敏 阎丽凤 +2 位作者 盛春岩 范苏丹 车军辉 《海洋预报》 2015年第3期59-67,共9页
基于中尺度数值模式WRF_RUC的预报产品,采用逐步回归的MOS方法,对山东12个精细海区代表站有关大风进行解释应用。对2013年9月—2014年4月海区风的客观预报产品进行检验,结果表明:MOS预报方法对6级以上日最大风速有较好的预报能力,较WRF_... 基于中尺度数值模式WRF_RUC的预报产品,采用逐步回归的MOS方法,对山东12个精细海区代表站有关大风进行解释应用。对2013年9月—2014年4月海区风的客观预报产品进行检验,结果表明:MOS预报方法对6级以上日最大风速有较好的预报能力,较WRF_RUC模式直接输出的预报结果有了明显的提高,但对4级以下小风预报效果较差。选取4级风作为阈值,当WRF_RUC模式预报风力大于4级时,用MOS预报结果替换,显著提高了风速分级预报效果,无论是4级以下小风还是6级以上大风,MOS预报评分都要高于WRF_RUC模式预报。将平均风速与阵风的统计关系应用到阵风客观预报中,MOS方法对于改进的日极大风速的预报效果有明显提高,对10级强风也有一定的预报能力。 展开更多
关键词 海上大风 TS评分 MOS方法
在线阅读 下载PDF
POAMA海气耦合模式对2003和2004年南海夏季风预报能力的评估 被引量:11
20
作者 柳艳菊 丁一汇 +1 位作者 Keenan T 孙爱东 《热带海洋学报》 CAS CSCD 北大核心 2005年第5期19-30,共12页
运用澳大利亚大气海洋耦合预报模式(Predictive Ocean Atmosphere Model for Australia,POAMA)的输出结果,采用泰勒图与分类统计分析方法,评估了该模式对2003和2004年南海夏季风的爆发和演变进行实时预报的能力。通过对泰勒图的分析发现... 运用澳大利亚大气海洋耦合预报模式(Predictive Ocean Atmosphere Model for Australia,POAMA)的输出结果,采用泰勒图与分类统计分析方法,评估了该模式对2003和2004年南海夏季风的爆发和演变进行实时预报的能力。通过对泰勒图的分析发现,随着预报初始时间越来越接近实际的季风爆发时间,模式预报南海夏季风爆发和演变的能力越来越强。当提前1—30d预报南海夏季风时,模式能够很好地预报风场、射出长波辐射OLR(Outgoing Longwave Radiation)和降水场的空间分布,其中对风场的预报最好。通过对季风爆发指数和分类统计的分析,定量分析了模式预报南海夏季风爆发的能力,结果表明该模式对南海夏季风爆发时间有一定的预报能力,其最大预报时限可以提前10—15d左右,这与目前中期预报的上限(2周)是一致的。 展开更多
关键词 海气耦合模式 南海夏季风 季风预报 预报能力
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部