在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异...在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。展开更多
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ...Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diver...Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.展开更多
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the...Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.展开更多
文摘在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。
基金Supported by the Development and Application Project of Ship CAE Software.
文摘Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
基金supported by the Laoshan Laboratory[grant number LSKJ202202403]the National Natural Science Foundation of China[grant number 42030410]+1 种基金additionally supported by the Startup Foundation for Introducing Talent of NUISTJiangsu Innovation Research Group[grant number JSSCTD202346]。
文摘Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.
基金jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program[grant number-ber 2019QZKK0103]the National Natural Science Foundation of China[grant number 42293294]the China Meteorological Admin-istration Climate Change Special Program[grant number QBZ202303]。
文摘Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.