The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean ...The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.展开更多
通过对南海北部和中部两套时间序列沉积物捕获器中的颗粒物样品进行硅藻分析,揭示了南海北部和中部硅藻通量的季节变化规律及其区域差异和各自对东亚季风气候的响应。研究表明在南海北部和中部海域,硅藻通量可以在一定程度上指示海洋初...通过对南海北部和中部两套时间序列沉积物捕获器中的颗粒物样品进行硅藻分析,揭示了南海北部和中部硅藻通量的季节变化规律及其区域差异和各自对东亚季风气候的响应。研究表明在南海北部和中部海域,硅藻通量可以在一定程度上指示海洋初级生产力水平,其中南海北部硅藻通量明显低于中部,这可能与北部颗粒物样品采集期间发生的El Ni o事件有关;南海北部和中部硅藻通量均存在明显的季节性变化规律,其中东亚冬季风对南海北部海域硅藻的生长有着显著影响,而南海中部则受夏季西南季风的影响更为强烈;南海北部深层硅藻通量高于浅层,这表明南海北部可能存在较强的深层流作用。展开更多
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.
基金financially supported by the National Natural Science Foundation of China(Grant No.12074088).
文摘The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.
文摘通过对南海北部和中部两套时间序列沉积物捕获器中的颗粒物样品进行硅藻分析,揭示了南海北部和中部硅藻通量的季节变化规律及其区域差异和各自对东亚季风气候的响应。研究表明在南海北部和中部海域,硅藻通量可以在一定程度上指示海洋初级生产力水平,其中南海北部硅藻通量明显低于中部,这可能与北部颗粒物样品采集期间发生的El Ni o事件有关;南海北部和中部硅藻通量均存在明显的季节性变化规律,其中东亚冬季风对南海北部海域硅藻的生长有着显著影响,而南海中部则受夏季西南季风的影响更为强烈;南海北部深层硅藻通量高于浅层,这表明南海北部可能存在较强的深层流作用。