Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-...Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-shaped mineralization in SE China are summarized,and the relations between their ore veins and granite and the ore-forming structural stress field are analyzed.These deposits have a post-magmatic hydrothermal genesis and involve the formation of two sets of veins with similar strike and opposite dips at the top of the ore-causative granite bodies,forming a vertical fan-shaped profile.Their ore veins were coeval with the underlying granite bodies,and generally extend along the long axis of the granite.In such fan-shaped ore formation,the stress is highly focused at the top of the granite and gradually weakens outward.The maximum principal stress(σ1)is perpendicular to the granite contact surface,and radiates outward from the pluton.Meanwhile,the minimum principal stress(σ3)forms an arc-shaped band parallel to the contact surface.Our findings,together with published numerical modeling indicate that the emplacement dynamics of granitic magma(rather than regional horizontal tectonic stress)are essential controls on the distribution of ore veins in quartz vein-type tungsten deposits.展开更多
基金funded by the National Key Research&Development Program of China(No.2021YFC2900100)the Guangxi Natural Science Foundation(No.2022GXNSFFA035025)+3 种基金the Chinese National Natural Science Foundation(No.42372099)the China Geological Survey(No.DD20190379)the Science&Technology Fundamental Resources Investigation Program(No.2022FY101800)the Major Talent Program of Guangxi Zhuang Autonomous Region,and the Innovation Project of Guangxi Graduate Education(No.YCSW2023345)。
文摘Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-shaped mineralization in SE China are summarized,and the relations between their ore veins and granite and the ore-forming structural stress field are analyzed.These deposits have a post-magmatic hydrothermal genesis and involve the formation of two sets of veins with similar strike and opposite dips at the top of the ore-causative granite bodies,forming a vertical fan-shaped profile.Their ore veins were coeval with the underlying granite bodies,and generally extend along the long axis of the granite.In such fan-shaped ore formation,the stress is highly focused at the top of the granite and gradually weakens outward.The maximum principal stress(σ1)is perpendicular to the granite contact surface,and radiates outward from the pluton.Meanwhile,the minimum principal stress(σ3)forms an arc-shaped band parallel to the contact surface.Our findings,together with published numerical modeling indicate that the emplacement dynamics of granitic magma(rather than regional horizontal tectonic stress)are essential controls on the distribution of ore veins in quartz vein-type tungsten deposits.