Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mi...Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.展开更多
The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystallin...The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystalline mineralogy,geochemistry,and Re-Os and U-Pb geochronology in the Dahu,Qinnan,and Yangzhaiyu deposits.The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E-W-trending and NW-SE-trending shear zones.Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite,pyrite,rutile,and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits.Early and late Au mineralization events have similar mineral assemblages of pyrite,native gold±Au-Ag-Te minerals,rutile,and monazite associated with quartz-sericite alteration at Yangzhaiyu.The early dissem-inated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning,in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re.The early molybdenite has a Re-Os isochron age of 222.5±1.3 Ma,compatible with a monazite U-Pb age of 224±6.1 Ma,whereas late molybdenite provides a Re-Os isochron age of 185.0±12 Ma,with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating.The early and late Au mineralization have a pyrite Re-Os age of 202.0±5.9 Ma and U-Pb age of 124.0±1.3 Ma,respectively.In accordance with its complex geodynamic setting,geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.展开更多
The Yangchuling porphyry W-Mo deposit(YPWD),located in the Jiangnan porphyryskarn tungsten ore belt,is one of the most important and large-scale porphyry W-Mo deposits in South China.While previous zircon U-Pb and mol...The Yangchuling porphyry W-Mo deposit(YPWD),located in the Jiangnan porphyryskarn tungsten ore belt,is one of the most important and large-scale porphyry W-Mo deposits in South China.While previous zircon U-Pb and molybdenite Re-Os data suggest that Yangchuling WMo ore bodies formed almost simultaneously with granodiorite and monzogranitic porphyry at~150–144 Ma,their post emplacement history remains poorly understood,making their preservation status at depth uncertain.In this paper,new zircon and apatite(U-Th)/He and apatite fission track(ZHe,AHe and AFT,respectively)data of one hornfels and five intrusive rocks from a 1000-meter borehole are presented.These,together with new inverse thermal history models and previous geochronological data,help elucidate the post-diagenetic exhumation history and preservation status of the Yangchuling porphyry W-Mo deposit.In general,ZHe and AHe ages decrease gradually from the near surface downwards and have relatively little intra-sample variation,ranging from 133 to 73Ma and 67 to 25 Ma,respectively.All four granodiorites yield similar AFT ages that range from 63 to 55 Ma with mean track lengths varying from 12.2±0.7 to 12.6±0.5μm.Thermal history modelling indicates that the Yangchuling ore district experienced slow,monotonic cooling since the Cretaceous.Age-depth relationships are interpreted as recording~3.7±0.8 km of Cretaceous-recent exhumation in response to regional extension throughout South China thought to have been driven by subduction retreat of the Paleo-Pacific Plate.Comparison of estimated net exhumation and previous metallogenic depth of~4–5 km suggests that W-Mo ore bodies could still exist at depths of up to~1.3±0.8 km relative to Earth surface in the YPWD region.Preservation of the YPWD is attributed to the limited amount of regional denudation during the Late Cretaceous and Cenozoic.展开更多
基金supported by the National Science and Technology Major Project(No.2024ZD1001005)the National Natural Science Foundation of China(No.42172103)+2 种基金the Natural Science Foundation of Hubei Province(Nos.2023AFD206,2024AFD401,2025AFD439,2025AFD452)the Research Fund Program of Hubei Key Laboratory of Resources and Eco-Environment Geology(Nos.HBREGKFJJ-202302,HBREGKFJJ-202402)the State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR202424)。
文摘Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.
基金supported by the National Key Research and Development Project of China(2020YFA0714802)the National Natural Science Foundation of China(42330809)the 111 Project of the Ministry of Science and Technology(BP0719021).
文摘The timings and geodynamic controls of Mo,Au,and Au-Mo deposits in the Xiaoqinling Orogen(>630 t Au and 115,000 t Mo),a rare Au-Mo province globally,are addressed by a combination of mineral par-ageneses,crystalline mineralogy,geochemistry,and Re-Os and U-Pb geochronology in the Dahu,Qinnan,and Yangzhaiyu deposits.The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E-W-trending and NW-SE-trending shear zones.Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite,pyrite,rutile,and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits.Early and late Au mineralization events have similar mineral assemblages of pyrite,native gold±Au-Ag-Te minerals,rutile,and monazite associated with quartz-sericite alteration at Yangzhaiyu.The early dissem-inated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning,in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re.The early molybdenite has a Re-Os isochron age of 222.5±1.3 Ma,compatible with a monazite U-Pb age of 224±6.1 Ma,whereas late molybdenite provides a Re-Os isochron age of 185.0±12 Ma,with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating.The early and late Au mineralization have a pyrite Re-Os age of 202.0±5.9 Ma and U-Pb age of 124.0±1.3 Ma,respectively.In accordance with its complex geodynamic setting,geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.
基金supported by the National Natural Science Foundation of China(Nos.42162013,42002095)the Foundation of State Key Laboratory of Nuclear Resources and Environment(Nos.2022NRE34,NRE2021-01)+1 种基金Jiangxi Provincial Natural Science Foundation(Nos.20242BAB26048,20242BAB25178)Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(No.6142A01210405)。
文摘The Yangchuling porphyry W-Mo deposit(YPWD),located in the Jiangnan porphyryskarn tungsten ore belt,is one of the most important and large-scale porphyry W-Mo deposits in South China.While previous zircon U-Pb and molybdenite Re-Os data suggest that Yangchuling WMo ore bodies formed almost simultaneously with granodiorite and monzogranitic porphyry at~150–144 Ma,their post emplacement history remains poorly understood,making their preservation status at depth uncertain.In this paper,new zircon and apatite(U-Th)/He and apatite fission track(ZHe,AHe and AFT,respectively)data of one hornfels and five intrusive rocks from a 1000-meter borehole are presented.These,together with new inverse thermal history models and previous geochronological data,help elucidate the post-diagenetic exhumation history and preservation status of the Yangchuling porphyry W-Mo deposit.In general,ZHe and AHe ages decrease gradually from the near surface downwards and have relatively little intra-sample variation,ranging from 133 to 73Ma and 67 to 25 Ma,respectively.All four granodiorites yield similar AFT ages that range from 63 to 55 Ma with mean track lengths varying from 12.2±0.7 to 12.6±0.5μm.Thermal history modelling indicates that the Yangchuling ore district experienced slow,monotonic cooling since the Cretaceous.Age-depth relationships are interpreted as recording~3.7±0.8 km of Cretaceous-recent exhumation in response to regional extension throughout South China thought to have been driven by subduction retreat of the Paleo-Pacific Plate.Comparison of estimated net exhumation and previous metallogenic depth of~4–5 km suggests that W-Mo ore bodies could still exist at depths of up to~1.3±0.8 km relative to Earth surface in the YPWD region.Preservation of the YPWD is attributed to the limited amount of regional denudation during the Late Cretaceous and Cenozoic.