Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indic...Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover.展开更多
Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. ...Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. On the whole, the extension direction of all the detachment faults is perpendicular to the strike of the Himalayan Orogen. Each detachment fault has its distinct characteristics. Mylonite was extensively developed in the detachment faults and can be divided into a variety of types such as siliceous mylonite, felsic mylonite, granite mylonite, protomylonite, crystallization mylonite and so on. On the basis of our field survey works, these detachment faults can be classified according to their locations into three units listed as follows: (1) In the northern part of the study area, the detachment faults occur on large scale and in orbicular shape, and form the middle layer of the metamorphic core complexes. (2) In the southern part of the study area, the detachment faults occur in linear shape that is parallel to the Himalayan Orogen and has a stable attitude, and have undergone two phases of development. In the first phase, the Rouqiechun Group rocks were formed and make up the hanging wall, while in the second phase the Jiachun Group rocks were formed and make up the hanging wall. (3) In the southeastern part of the study area, the detachment faults strike nearly along southeast direction in a stable way and some of these detachment faults were distorted by the late-formed faults and folds. Furthermore, in the southwestern part of the study area, the ductile shear zones are parallel to the detachment faults.展开更多
基金National Natural Science Foundation of China No.90202012+1 种基金 National Basic Research Program of China, No.2005CB422006 No. 2002CB412507
文摘Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover.
基金supported by China Geological Survev's regional geological survey program(No.200013000145)in the Dinggve area(H45C004003)of the Qinghai-Tibet Plateau on a scale of 1:250 000
文摘Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. On the whole, the extension direction of all the detachment faults is perpendicular to the strike of the Himalayan Orogen. Each detachment fault has its distinct characteristics. Mylonite was extensively developed in the detachment faults and can be divided into a variety of types such as siliceous mylonite, felsic mylonite, granite mylonite, protomylonite, crystallization mylonite and so on. On the basis of our field survey works, these detachment faults can be classified according to their locations into three units listed as follows: (1) In the northern part of the study area, the detachment faults occur on large scale and in orbicular shape, and form the middle layer of the metamorphic core complexes. (2) In the southern part of the study area, the detachment faults occur in linear shape that is parallel to the Himalayan Orogen and has a stable attitude, and have undergone two phases of development. In the first phase, the Rouqiechun Group rocks were formed and make up the hanging wall, while in the second phase the Jiachun Group rocks were formed and make up the hanging wall. (3) In the southeastern part of the study area, the detachment faults strike nearly along southeast direction in a stable way and some of these detachment faults were distorted by the late-formed faults and folds. Furthermore, in the southwestern part of the study area, the ductile shear zones are parallel to the detachment faults.