地球的水从何而来?这个看似简单的问题,实际上牵涉到行星科学中最基本也最复杂的谜题之一。地球的水可追溯至地球形成初期,源于含水星子的吸积或对太阳星云气体的捕获(Young et al.,2023)。然而,早期地球经历了剧烈的撞击事件,整个地幔...地球的水从何而来?这个看似简单的问题,实际上牵涉到行星科学中最基本也最复杂的谜题之一。地球的水可追溯至地球形成初期,源于含水星子的吸积或对太阳星云气体的捕获(Young et al.,2023)。然而,早期地球经历了剧烈的撞击事件,整个地幔可能处于熔融状态,形成深达核幔边界的岩浆洋。地幔从早期的广泛熔融到现今固态为主的转变过程中,水这种高度不相容的挥发分组分究竟如何留存,并最终演化为今天地球内部的水储库(Peslier et al.,2017)?这一问题长期缺乏直接的实验约束。展开更多
近20多年来,以南阿尔金为代表的多个典型超高压变质带中陆续发现了陆壳超深俯冲到或接近于斯石英稳定域地幔深度(>250~300km)并折返回地表的岩石学证据,代表了国际上大陆深俯冲与超高压作用研究领域的突破性新进展,并由此催生出了“...近20多年来,以南阿尔金为代表的多个典型超高压变质带中陆续发现了陆壳超深俯冲到或接近于斯石英稳定域地幔深度(>250~300km)并折返回地表的岩石学证据,代表了国际上大陆深俯冲与超高压作用研究领域的突破性新进展,并由此催生出了“陆壳超深俯冲作用”和“极超高压变质作用”的新概念。然而,由于以下两个方面的原因致使这些研究和认识还没有得到地学界的广泛认可。其一,这些岩石学证据主要是来自一些具有溶解度实验资料支撑的特殊矿物的显微出溶结构等,但由于矿物出溶结构成因的复杂性或多解性,尤其是矿物出溶结构的高温高压实验(或矿物溶解度实验的反向实验)研究鲜有报道,使得对矿物显微出溶结构成因的解释及其指示的地质意义存在较大争议,甚至怀疑其是否是“出溶结构”。其二,实验岩石学资料表明,大陆地壳物质俯冲到>250km的地幔深度时会发生一系列矿物相变,最终成为以高密度斯石英、K-锰钡矿、石榴子石等为主要组成矿物的岩石,并导致其密度高于围岩地幔岩而失去浮力,因此250km的地幔深度被前人定义为陆壳岩石“永不回返的深度”(Depth of no return)。那么,超深俯冲到斯石英稳定域地幔深度(>250km)的陆壳岩石是如何折返到地表的?这既是困惑国际地球科学界的一道难题,也是陆壳岩石超深俯冲到斯石英稳定域地幔深度后折返回地表的认识未被广泛接受的另一重要理由。本文重点针对这两个关键科学问题,并围绕极超高压变质作用及其构造地质意义等衍生科学问题,概述了近年来我们和其他研究团队取得的一些重要新进展,主要包括:(1)陆壳超深俯冲到斯石英或相当于斯石英稳定域的地幔深度(>250~300km)形成极超高压变质岩石,然后再折返回地表的地质现象在全球可能具有一定的普遍性,极超高压变质岩石类型具有多样性;(2)有溶解度实验和出溶实验数据支撑的矿物显微出溶结构与指示压力的特征矿物(如柯石英、金刚石、斯石英等)一样,可作为超-极超高压变质条件的识别标志,南阿尔金先期依据先存斯石英出溶蓝晶石+尖晶石等证据获得的关于陆壳岩石可俯冲到斯石英稳定域地幔深度并折返回地表的结论是可靠的;(3)俯冲陆壳与洋壳板片在>250km的地幔深度仍未断离,是控制陆壳超深俯冲与引发极超高压变质的必要条件之一;(4)加热使斯石英相变为柯石英导致岩石密度的减小,是超深俯冲到斯石英稳定域地幔深度(>250~300km)长英质陆壳岩石折返的主要驱动力,合理地解释了超深俯冲到斯石英稳定域地幔深度陆壳岩石的折返机制;(5)大陆板片超深俯冲过程中发生的4次矿物相变使其密度逐渐增大,尤其是柯石英相转变为斯石英(>250km的地幔深度)后俯冲板片的密度会显著大于围岩地幔,从而引发超深俯冲陆壳板片的后撤或回卷(rollback),进而导致俯冲带上盘出现伸展以及软流圈地幔的上涌,而上涌的软流圈地幔又可能为超深俯冲到斯石英稳定域地幔深度的大陆板片的加热提供了热源,致使其中斯石英转变为柯石英而获得自折返的浮力;(6)以大陆深-超深俯冲与折返过程及其地质响应为主线,以陆壳成因超-极超高压岩石的峰期变质、退变质和深熔-岩浆作用的演化序列为时间坐标,可用来约束大陆深-超深俯冲作用形成的碰撞造山带演化过程中洋盆关闭、大陆俯冲-碰撞、造山带伸展垮塌并抬升剥蚀等关键事件的时间节点。另外,本文还提出了关于陆壳超深俯冲与极超高压变质作用深入研究面临挑战的一些科学问题及其思考。展开更多
文摘地球的水从何而来?这个看似简单的问题,实际上牵涉到行星科学中最基本也最复杂的谜题之一。地球的水可追溯至地球形成初期,源于含水星子的吸积或对太阳星云气体的捕获(Young et al.,2023)。然而,早期地球经历了剧烈的撞击事件,整个地幔可能处于熔融状态,形成深达核幔边界的岩浆洋。地幔从早期的广泛熔融到现今固态为主的转变过程中,水这种高度不相容的挥发分组分究竟如何留存,并最终演化为今天地球内部的水储库(Peslier et al.,2017)?这一问题长期缺乏直接的实验约束。
文摘近20多年来,以南阿尔金为代表的多个典型超高压变质带中陆续发现了陆壳超深俯冲到或接近于斯石英稳定域地幔深度(>250~300km)并折返回地表的岩石学证据,代表了国际上大陆深俯冲与超高压作用研究领域的突破性新进展,并由此催生出了“陆壳超深俯冲作用”和“极超高压变质作用”的新概念。然而,由于以下两个方面的原因致使这些研究和认识还没有得到地学界的广泛认可。其一,这些岩石学证据主要是来自一些具有溶解度实验资料支撑的特殊矿物的显微出溶结构等,但由于矿物出溶结构成因的复杂性或多解性,尤其是矿物出溶结构的高温高压实验(或矿物溶解度实验的反向实验)研究鲜有报道,使得对矿物显微出溶结构成因的解释及其指示的地质意义存在较大争议,甚至怀疑其是否是“出溶结构”。其二,实验岩石学资料表明,大陆地壳物质俯冲到>250km的地幔深度时会发生一系列矿物相变,最终成为以高密度斯石英、K-锰钡矿、石榴子石等为主要组成矿物的岩石,并导致其密度高于围岩地幔岩而失去浮力,因此250km的地幔深度被前人定义为陆壳岩石“永不回返的深度”(Depth of no return)。那么,超深俯冲到斯石英稳定域地幔深度(>250km)的陆壳岩石是如何折返到地表的?这既是困惑国际地球科学界的一道难题,也是陆壳岩石超深俯冲到斯石英稳定域地幔深度后折返回地表的认识未被广泛接受的另一重要理由。本文重点针对这两个关键科学问题,并围绕极超高压变质作用及其构造地质意义等衍生科学问题,概述了近年来我们和其他研究团队取得的一些重要新进展,主要包括:(1)陆壳超深俯冲到斯石英或相当于斯石英稳定域的地幔深度(>250~300km)形成极超高压变质岩石,然后再折返回地表的地质现象在全球可能具有一定的普遍性,极超高压变质岩石类型具有多样性;(2)有溶解度实验和出溶实验数据支撑的矿物显微出溶结构与指示压力的特征矿物(如柯石英、金刚石、斯石英等)一样,可作为超-极超高压变质条件的识别标志,南阿尔金先期依据先存斯石英出溶蓝晶石+尖晶石等证据获得的关于陆壳岩石可俯冲到斯石英稳定域地幔深度并折返回地表的结论是可靠的;(3)俯冲陆壳与洋壳板片在>250km的地幔深度仍未断离,是控制陆壳超深俯冲与引发极超高压变质的必要条件之一;(4)加热使斯石英相变为柯石英导致岩石密度的减小,是超深俯冲到斯石英稳定域地幔深度(>250~300km)长英质陆壳岩石折返的主要驱动力,合理地解释了超深俯冲到斯石英稳定域地幔深度陆壳岩石的折返机制;(5)大陆板片超深俯冲过程中发生的4次矿物相变使其密度逐渐增大,尤其是柯石英相转变为斯石英(>250km的地幔深度)后俯冲板片的密度会显著大于围岩地幔,从而引发超深俯冲陆壳板片的后撤或回卷(rollback),进而导致俯冲带上盘出现伸展以及软流圈地幔的上涌,而上涌的软流圈地幔又可能为超深俯冲到斯石英稳定域地幔深度的大陆板片的加热提供了热源,致使其中斯石英转变为柯石英而获得自折返的浮力;(6)以大陆深-超深俯冲与折返过程及其地质响应为主线,以陆壳成因超-极超高压岩石的峰期变质、退变质和深熔-岩浆作用的演化序列为时间坐标,可用来约束大陆深-超深俯冲作用形成的碰撞造山带演化过程中洋盆关闭、大陆俯冲-碰撞、造山带伸展垮塌并抬升剥蚀等关键事件的时间节点。另外,本文还提出了关于陆壳超深俯冲与极超高压变质作用深入研究面临挑战的一些科学问题及其思考。
文摘安徽沿江地区地处长江深大断裂带的中部,构造上隶属由华北板块与扬子板块在 T_2—J_2发生陆-陆碰撞形成的大别造山带的前陆带。在 J_3—K_1时期,区内发生了岩石圈伸展减薄背景下的碰撞后到岩石圈拆沉背景下的造山后岩浆活动和相应的壳幔相互作用,形成了广泛分布的碰撞后到造山后火山-侵入杂岩组合。碰撞后岩浆活动大致发生在125~145Ma,铜陵地区辉长岩包体和大量堆积岩的形成标志着这一时期的开始,而富碱岩浆岩的形成标志着这一时期的结束。在这一时期形成的岩石中,繁昌盆地中的中分村组和赤砂组火山岩以及南部侵入岩属于碰撞后岩浆岩组合中的过铝质的长英质岩套;由中部铜陵地区的中酸性侵入岩和北外带侵入岩等构成的中钾-高钾钙碱性岩系和由铜陵地区的中基性侵入岩、庐枞盆地龙门院组和砖桥组火山岩、宁芜盆地龙王山组和大王山组火山岩以及沿长江两岸呈 NE 方向分布的富碱岩浆岩构成的橄榄安粗岩系属于碰撞后岩浆岩组合中的准铝质的镁铁质-长英质火成岩岩套。造山后岩浆作用大致发生在105~125Ma。宁芜地区辉长岩的侵入标志着这一时期的开始,而宁芜和庐枞地区过碱性岩的形成标志着这一时期的结束。在这一时期形成的岩石中,由繁昌盆地蝌蚪山组火山岩和庐枞盆地双庙组火山岩以及宁芜盆地辉长岩侵入体组成的碱性岩系和由庐枞盆地浮山组火山岩和宁芜盆地娘娘山组火山岩组成的过碱性岩系属于造山后碱性-过碱性火成岩岩套。与碰撞后到造山后岩浆活动相对应,在安徽沿江地区中生代发生了两期壳幔相互作用。其中早期壳幔相互作用表现为起源于岩石圈地幔上部圈层的底侵玄武岩浆与中下地壳间强烈的相互作用,而晚期壳幔相互作用表现为起源于岩石圈地幔下部圈层的玄武岩浆与中下地壳间微弱的相互作用。