Aeolian deposits across the Yarlung Zangbo River Basin on the southern Tibetan Plateau record the landscape and atmospheric evolution of Earth's Third Pole.The complex mountain-basin system exhibits nonlinear resp...Aeolian deposits across the Yarlung Zangbo River Basin on the southern Tibetan Plateau record the landscape and atmospheric evolution of Earth's Third Pole.The complex mountain-basin system exhibits nonlinear responses to climate forcing,complicating the interpretation of its high-altitude environmental dynamics.Investigating the magnetic enhancement mechanism of aeolian deposits offers an opportunity to decipher climate signals.Our analysis of three aeolian sections from the basin indicates that magnetic minerals are predominantly low-coercivity ferrimagnetic minerals,and grain sizes fine from upper to lower reaches due to climate shifts from arid to humid.Magnetic enhancement in the upper reaches primarily originates from dust input,while dust input and pedogenesis contribute variably over time in the middle and lower reaches.Similar complex patterns occur in the Ili basin,a mountain-basin system in northwestern China.They differ from the Chinese Loess Plateau,where long-distance-transported dust is well-mixed and the pedogenic enhancement model is applied,and desert peripheries where short-distance dust is transported and the dust input model is applied.We summarize the magnetic enhancement mechanisms in various settings and offer a new framework for applying magnetic techniques in paleoclimate reconstruction within global mountain-basin systems,which highlights the need for caution in interpreting their magnetic susceptibility records.展开更多
基金National Natural Science Foundation of China,No.42501182The Open Foundation of Key Laboratory of Western China’s Environmental System,Ministry of Education,Lanzhou Universitythe Fundamental Research Funds for the Central Universities,No.lzujbky-2024-jdzx01。
文摘Aeolian deposits across the Yarlung Zangbo River Basin on the southern Tibetan Plateau record the landscape and atmospheric evolution of Earth's Third Pole.The complex mountain-basin system exhibits nonlinear responses to climate forcing,complicating the interpretation of its high-altitude environmental dynamics.Investigating the magnetic enhancement mechanism of aeolian deposits offers an opportunity to decipher climate signals.Our analysis of three aeolian sections from the basin indicates that magnetic minerals are predominantly low-coercivity ferrimagnetic minerals,and grain sizes fine from upper to lower reaches due to climate shifts from arid to humid.Magnetic enhancement in the upper reaches primarily originates from dust input,while dust input and pedogenesis contribute variably over time in the middle and lower reaches.Similar complex patterns occur in the Ili basin,a mountain-basin system in northwestern China.They differ from the Chinese Loess Plateau,where long-distance-transported dust is well-mixed and the pedogenic enhancement model is applied,and desert peripheries where short-distance dust is transported and the dust input model is applied.We summarize the magnetic enhancement mechanisms in various settings and offer a new framework for applying magnetic techniques in paleoclimate reconstruction within global mountain-basin systems,which highlights the need for caution in interpreting their magnetic susceptibility records.