使用黄土高原气象台站的土壤湿度和降水观测资料以及GLDAS和CMFD再分析资料,分析黄土高原地区土壤湿度与降水量的时空分布及变化特征,通过回归分析、格兰杰因果检验和奇异值分解(Singular value decomposition,SVD),研究土壤湿度与降水...使用黄土高原气象台站的土壤湿度和降水观测资料以及GLDAS和CMFD再分析资料,分析黄土高原地区土壤湿度与降水量的时空分布及变化特征,通过回归分析、格兰杰因果检验和奇异值分解(Singular value decomposition,SVD),研究土壤湿度与降水之间的关系,分析初始土壤湿度影响随后降水的时间尺度与空间范围。结果显示:黄土高原的土壤湿度与随后1~2个月降水回归分析的解释方差相对较高,较大值在夏秋季节(7-10月),黄土高原不同区域(Ⅰ区、Ⅱ区和Ⅲ区)的土壤湿度与随后21天降水相关的时间较全区域的多,时间较集中,说明黄土高原土壤湿度分布不均匀,不同区域差别较大,较大的滞后降水时间尺度适用于较大空间范围的分析。格兰杰因果检验表明黄土高原全区域秋季(10月、11月)的初始土壤湿度对随后1个月或2个月的降水有显著影响,在Ⅲ区8月土壤湿度对10月的降水也有显著影响,这与回归分析的结果一致。再分析资料的SVD分解的结果显示,1979-2014年7月黄土高原中部、北部和东部土壤较湿润时,8月西部和北部边缘的降水偏多;9月东部的土壤偏湿润,则10月黄土高原西部以及南北部的一些地区降水偏多。土壤湿度与降水的显著相关区域重叠部分较少,说明黄土高原土壤湿度对降水的影响存在一定程度的时空不对称性。展开更多
The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested tha...The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.展开更多
The main aims of the current study are to determine the morphological features of the periglacial landforms(non-sorted step,mud circle,stony earth circle,thufur,and congeliturbation)located on the Ilgaz Mountains,exam...The main aims of the current study are to determine the morphological features of the periglacial landforms(non-sorted step,mud circle,stony earth circle,thufur,and congeliturbation)located on the Ilgaz Mountains,examine the physicochemical and mineralogical properties with pedological processes of the soils,and assess of the effects of climatic conditions controlling the development of landforms.The Ilgaz Mountains(2587 m a.s.l.),located in the Western Black Sea Region,within the Anatolian Mountains,are important in terms of periglacial landforms(mud circles,stony earth circles,thufurs,non-sorted steps,non-sorted stripes,congeliturbation deposits,and block currents).The descriptive statistics of 123 periglacial landforms measured by fieldworks were analyzed.The distribution of freezing and thawing in the Ilgaz Mountains throughout the year was evaluated,and it was found that freezing takes place between December and March,freezing-thawing takes place in April,May,October and November,and thawing takes place between June and October.Accoding to soil properties,organic matter content changes from 1.88%to 12.72%in non-sorted step soils,while it is between 2.03%and 12.24%in stony earth circle soils.The organic matter is observed to be close to congeliturbation deposits at lower ratios compared to non-sorted steps,stony earth circles and mud circles.The soil reactions on stony earth circles and non-sorted steps vary between slightly acidic and slightly alkaline.On the other hand,soil samples taken from the mud circles are different from those taken from the non-sorted steps and stony earth circles.Their soil reaction is acidic,and pH changes between 4.86 and 6.25.The lime content also varies between 2.81%and 32.08%,with an average of 12.02%.The texture properties of soils are dominantly loam and clay loam,as in the non-sorted steps,stony earth circles,and mud circles.Considering their mineralogical properties,the XRD study was carried out to determine the primer mineral types and abundance degrees of soils of periglacial landforms.Quartz,muscovite and albite minerals were found in soils in the stony earth circle,while quartz,muscovite,orthoclase and albite minerals were determined as primary minerals in soils formed on the thufur landforms.展开更多
通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起...通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起的综合温室效应(Global warming potential,GWP)和温室气体强度(Greenhouse gas intensity,GHGI)特征。结果表明:稻季配施20 t hm-2生物炭对N2O和CH4的排放、作物产量及GWP和GHGI均都无明显影响;稻季配施40 t hm-2生物炭能显著降低8.6%的CH4的排放和9.3%的GWP,显著增加作物产量17.2%。麦季配施20 t hm-2生物炭虽然对温室气体及GWP影响不明显,但显著增加21.6%的作物产量,从而显著降低21.7%的GHGI;麦季配施40 t hm-2生物炭能显著降低20.9%和11.3%的N2O和CH4排放,显著降低15.7%和23.5%的GWP和GHGI。因此麦季配施生物炭对减少N2O和CH4的排放、增加稻麦轮作产量及降低GWP和GHGI的效果较稻季配施生物炭效果更好。展开更多
利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)...利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。展开更多
文摘使用黄土高原气象台站的土壤湿度和降水观测资料以及GLDAS和CMFD再分析资料,分析黄土高原地区土壤湿度与降水量的时空分布及变化特征,通过回归分析、格兰杰因果检验和奇异值分解(Singular value decomposition,SVD),研究土壤湿度与降水之间的关系,分析初始土壤湿度影响随后降水的时间尺度与空间范围。结果显示:黄土高原的土壤湿度与随后1~2个月降水回归分析的解释方差相对较高,较大值在夏秋季节(7-10月),黄土高原不同区域(Ⅰ区、Ⅱ区和Ⅲ区)的土壤湿度与随后21天降水相关的时间较全区域的多,时间较集中,说明黄土高原土壤湿度分布不均匀,不同区域差别较大,较大的滞后降水时间尺度适用于较大空间范围的分析。格兰杰因果检验表明黄土高原全区域秋季(10月、11月)的初始土壤湿度对随后1个月或2个月的降水有显著影响,在Ⅲ区8月土壤湿度对10月的降水也有显著影响,这与回归分析的结果一致。再分析资料的SVD分解的结果显示,1979-2014年7月黄土高原中部、北部和东部土壤较湿润时,8月西部和北部边缘的降水偏多;9月东部的土壤偏湿润,则10月黄土高原西部以及南北部的一些地区降水偏多。土壤湿度与降水的显著相关区域重叠部分较少,说明黄土高原土壤湿度对降水的影响存在一定程度的时空不对称性。
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801603).
文摘The Yangtze River basin(YRB)experienced a record-breaking mei-yu season in June‒July 2020.This unique long-lasting extreme event and its origin have attracted considerable attention.Previous studies have suggested that the Indian Ocean(IO)SST forcing and soil moisture anomaly over the Indochina Peninsula(ICP)were responsible for this unexpected event.However,the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event,especially their linkage with atmospheric circulation changes,remain unclear.By using observations and numerical simulations,this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020.Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds.The intensification of the warm condition further magnified the land thermal effects,which in turn facilitated the westward extension of the western North Pacific subtropical high(WNPSH)in June‒July.The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB,thereby contributing to the 2020 mei-yu.In contrast,the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture.The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model.Their synergistic impacts yield a notable 32%increase in YRB precipitation.Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.
文摘The main aims of the current study are to determine the morphological features of the periglacial landforms(non-sorted step,mud circle,stony earth circle,thufur,and congeliturbation)located on the Ilgaz Mountains,examine the physicochemical and mineralogical properties with pedological processes of the soils,and assess of the effects of climatic conditions controlling the development of landforms.The Ilgaz Mountains(2587 m a.s.l.),located in the Western Black Sea Region,within the Anatolian Mountains,are important in terms of periglacial landforms(mud circles,stony earth circles,thufurs,non-sorted steps,non-sorted stripes,congeliturbation deposits,and block currents).The descriptive statistics of 123 periglacial landforms measured by fieldworks were analyzed.The distribution of freezing and thawing in the Ilgaz Mountains throughout the year was evaluated,and it was found that freezing takes place between December and March,freezing-thawing takes place in April,May,October and November,and thawing takes place between June and October.Accoding to soil properties,organic matter content changes from 1.88%to 12.72%in non-sorted step soils,while it is between 2.03%and 12.24%in stony earth circle soils.The organic matter is observed to be close to congeliturbation deposits at lower ratios compared to non-sorted steps,stony earth circles and mud circles.The soil reactions on stony earth circles and non-sorted steps vary between slightly acidic and slightly alkaline.On the other hand,soil samples taken from the mud circles are different from those taken from the non-sorted steps and stony earth circles.Their soil reaction is acidic,and pH changes between 4.86 and 6.25.The lime content also varies between 2.81%and 32.08%,with an average of 12.02%.The texture properties of soils are dominantly loam and clay loam,as in the non-sorted steps,stony earth circles,and mud circles.Considering their mineralogical properties,the XRD study was carried out to determine the primer mineral types and abundance degrees of soils of periglacial landforms.Quartz,muscovite and albite minerals were found in soils in the stony earth circle,while quartz,muscovite,orthoclase and albite minerals were determined as primary minerals in soils formed on the thufur landforms.
文摘通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起的综合温室效应(Global warming potential,GWP)和温室气体强度(Greenhouse gas intensity,GHGI)特征。结果表明:稻季配施20 t hm-2生物炭对N2O和CH4的排放、作物产量及GWP和GHGI均都无明显影响;稻季配施40 t hm-2生物炭能显著降低8.6%的CH4的排放和9.3%的GWP,显著增加作物产量17.2%。麦季配施20 t hm-2生物炭虽然对温室气体及GWP影响不明显,但显著增加21.6%的作物产量,从而显著降低21.7%的GHGI;麦季配施40 t hm-2生物炭能显著降低20.9%和11.3%的N2O和CH4排放,显著降低15.7%和23.5%的GWP和GHGI。因此麦季配施生物炭对减少N2O和CH4的排放、增加稻麦轮作产量及降低GWP和GHGI的效果较稻季配施生物炭效果更好。
文摘利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。