期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
湖南省主汛期5—8月降水过程延伸期智能预报 被引量:1
1
作者 曾玲玲 谭桂容 +3 位作者 赵辉 张祎 黄超 费麒铭 《大气科学学报》 北大核心 2025年第3期486-498,共13页
延伸期预报(提前10~30 d的天气预报)是目前尚未解决而又亟需解决的预报问题之一。本文利用2005—2022年湖南省97站逐日降水资料以及次季节至季节(subseasonal-to-seasonal,S2S)欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP... 延伸期预报(提前10~30 d的天气预报)是目前尚未解决而又亟需解决的预报问题之一。本文利用2005—2022年湖南省97站逐日降水资料以及次季节至季节(subseasonal-to-seasonal,S2S)欧洲中期天气预报中心(ECMWF)和美国国家环境预报中心(NCEP)两种模式预报产品,并分别以2005—2018年和2019—2022年为训练验证和独立预测年。基于模式的降水与环流预报产品,首先采用分级累积概率匹配和低频阈值法,对模式降水预报进行订正;然后通过分析大尺度环流特征与降水场的耦合关系,结合卷积神经网络(convolutional neural network,CNN)技术,分别构建基于ECMWF和NCEP动态预报产品的降水预测模型;最后对多种模型的预测结果进行集成,优化预测结果。试验结果表明,经过订正的两种模式延伸期降水预报的准确性均有显著提升,其中NCEP模式预报技巧的改进大于ECMWF模式。具体而言,订正后的NCEP模式单站降水预报TS评分提升38.5%,区域降水评分提升43.9%;ECMWF模式的TS评分提升14.0%,区域降水评分提升24.2%。独立预测表明,ECMWF模式预报的准确性要优于NCEP模式,特别是15 d预报时效前。CNN模型在15~30 d预报中展现出超越单一数值模式的预测能力,基于动力模式和CNN模型优势的集成预测在整个延伸期预报时效内均展现出较高的预报技巧。 展开更多
关键词 偏差订正 卷积神经网络 延伸期预报 最优集成方法 降水预报
在线阅读 下载PDF
WRF模式海南地区地表要素最优初始化时间研究 被引量:1
2
作者 焦悦 邢益航 +5 位作者 黄诗彤 吴晶 尚明 施晨晓 贺音 白磊 《气候变化研究快报》 2025年第3期399-410,共12页
数值天气预报的准确性极大地依赖于模式初始化场的质量及其平衡收敛过程,而这一过程在地形复杂、海陆交互显著的热带岛屿区域显得尤为关键。本研究基于WRF模式针对海南岛区域开展了不同分辨率初始场对模式平衡收敛特征的系统研究。采用E... 数值天气预报的准确性极大地依赖于模式初始化场的质量及其平衡收敛过程,而这一过程在地形复杂、海陆交互显著的热带岛屿区域显得尤为关键。本研究基于WRF模式针对海南岛区域开展了不同分辨率初始场对模式平衡收敛特征的系统研究。采用ERA5 (0.25˚)和ERA-Interim (0.75˚)再分析资料作为初始场,通过设计短期和长期平行对比试验,分析了2米温度(T2)、2米比湿(Q2)及10米风场(U10、V10)等近地面要素的平衡收敛特征。研究发现,高分辨率初始场显著提升了模式的平衡收敛效率,ERA5驱动的模拟在长期积分中温度场平均收敛时间较ERA-Interim缩短2.7小时(17.4 vs 20.1小时),比湿场缩短3.3小时(18.1 vs 21.4小时),风场缩短3.0-3.5小时(U10:20.2 vs 23.2小时,V10:21.1 vs 24.6小时)。短期模拟结果表明,不同物理量具有显著的时间依赖特征:温度场的平均收敛时间为2.8小时,比湿场为3.3小时,风场则需要3.7~4.0小时。特别是在18时起报的预报中,ERA5温度场的动态时间规整(Dynamic Time Warping, DTW)相关系数达到最高值0.93,而ERA-Interim降至0.87,表明ERA5在处理日落前后的温度变化方面具有独特优势。基于研究结果,ERA5在各物理量的预报中均表现出更快的收敛速度和更高的预报准确性,这对提升热带海岛地区数值预报水平具有重要的参考价值。The accuracy of numerical weather prediction heavily depends on the quality of model initialization fields and their spin-up process, which is particularly crucial in tropical island regions characterized by complex terrain and significant land-sea interactions. This study systematically investigated the impact of initial fields with different resolutions on model spin-up characteristics over Hainan Island using the WRF model. Using ERA5 (0.25˚) and ERA-Interim (0.75˚) reanalysis data as initial fields, we analyzed the spin-up characteristics of near-surface variables including 2-meter temperature (T2), 2-meter specific humidity (Q2), and 10-meter wind fields (U10, V10) through both short-term and long-term parallel experiments. Results demonstrated that high-resolution initial fields significantly enhanced model spin-up efficiency. In long-term simulations, ERA5-driven experiments showed shorter convergence times compared to ERA-Interim: temperature field convergence time decreased by 2.7 hours (17.4 vs 20.1 hours), specific humidity field by 3.3 hours (18.1 vs 21.4 hours), and wind fields by 3.0~3.5 hours (U10: 20.2 vs 23.2 hours, V10: 21.1 vs 24.6 hours). Short-term simulation results revealed distinct temporal dependencies among different physical variables: temperature field averaged 2.8 hours for convergence, specific humidity field required 3.3 hours, while wind fields needed 3.7~4.0 hours. Notably, in forecasts initialized at 18, ERA5 temperature field achieved the highest DTW correlation coefficient of 0.93, while ERA-Interim dropped to 0.87, indicating ERA5’s superior performance in capturing temperature variations during sunset transitions. Based on these findings, ERA5 demonstrated superior performance in both convergence speed and forecast accuracy across all physical variables, providing valuable insights for improving numerical weather prediction capabilities in tropical island regions. 展开更多
关键词 数值天气预报初始化 平衡收敛时间 再分析资料 边界层参数化 海陆相互作用 中尺度气象模拟
在线阅读 下载PDF
人工智能模型“风顺”对中国区域降水技巧检验
3
作者 胡家晖 陆波 +9 位作者 李昊 陈磊 仲晓辉 周辰光 吴捷 冯胤庭 徐邦琪 赵春燕 辛昱杭 赵阳 《大气科学学报》 北大核心 2025年第3期366-376,共11页
次季节预测在农业规划、防灾减灾和水资源管理等领域具有重要意义。基于人工智能的“风顺”次季节预测模型(CMA-AIM-S2S-Fengshun),结合自主研发的CRA-40再分析数据和FY-3E卫星数据,通过级联Swin Transformer模块和智能扰动生成技术,实... 次季节预测在农业规划、防灾减灾和水资源管理等领域具有重要意义。基于人工智能的“风顺”次季节预测模型(CMA-AIM-S2S-Fengshun),结合自主研发的CRA-40再分析数据和FY-3E卫星数据,通过级联Swin Transformer模块和智能扰动生成技术,实现了气候多要素集合预测。对2017—2021年中国区域降水的历史回算检验表明,“风顺”在逐候平均降水预测中的表现显著优于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)模式,整体技巧提升18.6%,其中华南地区提升41.2%,东部地区提升26.5%。在MJO(Madden-Julian Oscillation)预测方面,“风顺”将技巧保持时间延长至32 d(CRA-40驱动),超过ECMWF的30 d基准。个例分析显示,模型对2024年7月中旬华北强降水过程的落区和强度预测精度更高,提前3~4候捕捉到关键异常信号。 展开更多
关键词 人工智能 次季节预测 降水预测 “风顺”模型
在线阅读 下载PDF
基于卡尔曼“估计-校正”循环网络的暴雨临近预测
4
作者 刘杰 张彤 +3 位作者 王培晓 韩士元 冷亮 肖艳姣 《地球信息科学学报》 北大核心 2025年第4期888-899,共12页
【目的】精确的暴雨临近预测在防灾减灾、工农业生产和交通运输等多方面起着重要作用,对于保障社会经济发展与人民财产安全具有十分重要的意义。然而现有暴雨智能预测方法没有充分考虑暴雨过程、观测以及建模等环节的不确定性问题,阻碍... 【目的】精确的暴雨临近预测在防灾减灾、工农业生产和交通运输等多方面起着重要作用,对于保障社会经济发展与人民财产安全具有十分重要的意义。然而现有暴雨智能预测方法没有充分考虑暴雨过程、观测以及建模等环节的不确定性问题,阻碍了预测准确性和稳定性的提升。【方法】本文提出基于卡尔曼“估计-校正”循环网络的暴雨临近预测方法,在个别变化理论约束下估计气象状态,并在卡尔曼滤波的指导下依据估计误差进行气象状态校正,以实现准确和可靠的暴雨预测。所提“估计-校正”网络包括个别变化约束的深度状态估计和估计误差指导的气象状态校正2个核心单元;前者根据历史气象状态估计下一时间步的气象状态及误差;后者根据估计误差和观测误差进行气象状态的校正;二者共同提升暴雨预测精度和稳定性。【结果】在ERA5和NCEP数据集上的实验证明,所提方法的暴雨预测准确性指标CSI比所对比的基线方法提升了5%,并以稳定性指标SPREAD≈0.5的成绩取得了良好稳定性。【结论】验证了在深度学习中融合滤波理论缓解不确定性问题的可行性。 展开更多
关键词 暴雨预测 卡尔曼滤波 “估计-校正”循环网络 个别变化 物理信息神经网络
原文传递
Optimized Lagged Multiple Linear Regression Model for MJO Prediction:Considering the Surface and Subsurface Oceanic Processes over the Maritime Continent
5
作者 LU Kecheng LI Yiran +1 位作者 HU Haibo WANG Ziyi 《Journal of Ocean University of China》 2025年第4期840-850,共11页
The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of ... The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction. 展开更多
关键词 Madden-Julian Oscillation statistical forecasting Maritime Continent oceanic processes lagged multiple linear re-gression model
在线阅读 下载PDF
Impact of the Sequential Bias Correction Scheme on the CMA-MESO Numerical Weather Prediction Model
6
作者 Yuxiao CHEN Liwen WANG +7 位作者 Daosheng XU Jeremy Cheuk-Hin LEUNG Yanan MA Shaojing ZHANG Jing CHEN Yi YANG Wenshou TIAN Banglin ZHANG 《Advances in Atmospheric Sciences》 2025年第8期1580-1596,共17页
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was... Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models. 展开更多
关键词 numerical weather prediction model error systematic bias bias correction SBCS
在线阅读 下载PDF
一种优于动力次季节温度预测的机器学习模型
7
作者 薛翔海 《数据挖掘》 2025年第2期176-183,共8页
可靠的次季节温度预测对极端温度事件的防灾减灾至关重要。然而,现有的次季节温度预测动力模型常受到初值问题和边值问题的影响,导致其预报能力相对薄弱。尽管近年来机器学习模型在次季节预测中逐渐展示出超越动力模型的潜力,但中国次... 可靠的次季节温度预测对极端温度事件的防灾减灾至关重要。然而,现有的次季节温度预测动力模型常受到初值问题和边值问题的影响,导致其预报能力相对薄弱。尽管近年来机器学习模型在次季节预测中逐渐展示出超越动力模型的潜力,但中国次季节温度预测仍主要依赖于动力学模型。鉴于此,本研究基于Lasso (Multi-task Lasso)机器学习算法,构建了覆盖中国所有格点的次季节温度预测模型,并采用余弦相似度指标评估Lasso和CFSv2 (The Climate Forecast System version 2)动力模型在2018~2022年测试期内的预测性能表现。结果表明:Lasso在整体预测技能上显著优于CFSv2,其在未来3~4周和5~6周的平均余弦相似度较CFSv2分别提升了0.33和0.34;并且,在常规温度情景下,Lasso能够更精准地捕捉温度变化的规律,80%以上月份的平均CS高于CFSv2;其仅在极端低温情景下存在一定局限性,预测技能略逊于CFSv2。Reliable subseasonal temperature forecasting plays an important part in extreme temperature events prevention and mitigation. However, current dynamical models for subseasonal temperature forecasting are often influenced by initial value and boundary value problems, resulting in relatively weak forecasting performance. Although machine learning models have shown potential in surpassing dynamical models for subseasonal forecasting in recent years, subseasonal temperature forecasting in China still mainly relies on dynamical models. Under this background, the study constructs a subseasonal temperature forecasting model covering 957 grid points across China based on the Lasso (Multi-task Lasso) machine learning algorithm and uses the cosine similarity metric to evaluate the performance between the Lasso and CFSv2 (The Climate Forecast System version 2) dynamic model during the test period from 2018 to 2022. The results show that the Lasso significantly outperforms CFSv2 in overall forecasting performance. The average cosine similarity of the Lasso is 0.33 and 0.34 higher than the CFSv2 at the forecast horizon of weeks 3~4 and 5~6, respectively. Moreover, in normal temperature scenarios, the Lasso can more accurately capture temperature variation patterns with the average cosine similarity for over 80% of the months higher than that of the CFSv2. However, the Lasso has some limitations in forecasting extreme low temperature scenarios, where its forecasting skill is slightly inferior to that of the CFSv2. 展开更多
关键词 动力模型 机器学习模型 次季节温度预测 中国
在线阅读 下载PDF
A New Method to Calculate Nonlinear Optimal Perturbations for Ensemble Forecasting
8
作者 Junjie MA Wansuo DUAN +1 位作者 Zhuomin LIU Ye WANG 《Advances in Atmospheric Sciences》 2025年第5期952-967,共16页
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi... Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events. 展开更多
关键词 initial uncertainty conditional nonlinear optimal perturbation optimization method ensemble forecasting
在线阅读 下载PDF
Improving subseasonal forecasting of East Asian monsoon precipitation with deep learning
9
作者 Jiahui Zhou Fei Liu 《Atmospheric and Oceanic Science Letters》 2025年第3期34-40,共7页
Accurate subseasonal forecasting of East Asian summer monsoon(EASM)precipitation is crucial,as it directly impacts the livelihoods of billions.However,the prediction skill of state-of-the-art subseasonal-to-seasonal(S... Accurate subseasonal forecasting of East Asian summer monsoon(EASM)precipitation is crucial,as it directly impacts the livelihoods of billions.However,the prediction skill of state-of-the-art subseasonal-to-seasonal(S2S)models for precipitation remains limited.In this study,the authors developed a convolutional neural network(CNN)regression model to enhance the prediction skill for weekly EASM precipitation by utilizing the more reliably predicted circulation fields from dynamic models.The outcomes of the CNN model are promising,as it led to a 14%increase in the anomaly correlation coefficient(ACC),from 0.30 to 0.35,and a 22%reduction in the root-mean-square error(RMSE),from 3.22 to 2.52,for predicting the weekly EASM precipitation index at a leading time of one week.Among the S2S models,the improvement in prediction skill through CNN correction depends on the model’s performance in accurately predicting circulation fields.The CNN correction of EASM precipitation index can only rectify the systematic errors of the model and is independent of whether the each grid point or the entire area-averaged index is corrected.Furthermore,u200(200-hPa zonal wind)is identified as the most important variable for efficient correction. 展开更多
关键词 East asian monsoon precipitation Subseasonal forecast Deep learning Bias correction
在线阅读 下载PDF
Impact of Assimilating Pseudo-Observations Derived from the“Z-RH”Relation on Analyses and Forecasts of a Strong Convection Case
10
作者 Feifei SHEN Lixin SONG +4 位作者 Jinzhong MIN Zhixin HE Aiqing SHU Dongmei XU Jiajun CHEN 《Advances in Atmospheric Sciences》 2025年第5期1010-1025,共16页
Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to a... Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to avoid the nonlinearity issues associated with the observation operator.In a widely applied water vapor retrieval scheme,a cloud is assumed to be saturated when the radar reflectivity exceeds a certain threshold.This study replaces the traditional retrieval scheme with the“Z-RH”(radar reflectivity and relative humidity)linear statistical relationship for estimating the water vapor content,which is implemented to reduce the uncertainty caused by empirical relationships.The“Z-RH”relationship is statistically obtained from the humidity and the observations for rainfall rate at different temperature intervals with the use of the Z-R(radar reflectivity-rain rate)relationship.The impacts of these two retrieval approaches are investigated in the analyses and forecasts based on the radar reflectivity.The results suggest that both water vapor retrieval schemes yield similar reflectivity analyses,with“Z-RH”showing slightly stronger reflectivity intensities.Utilizing a“Z-RH”scheme contributes significantly to the improved analyses and forecasts of humidity and wind fields,resulting in more reasonable thermodynamic and dynamic structures.As the“Z-RH”relationship obtained by real-time statistics in a specific area provides a scientific basis for the retrieval of water vapor,a“Z-RH”scheme is beneficial to obtain more accurate reflectivity forecasts.The overall scores for the predicted precipitation of a“Z-RH”scheme are roughly 10%-20%higher compared to those of the traditional scheme. 展开更多
关键词 radar reflectivity data indirect assimilation water vapor retrieval heavy precipitation forecast
在线阅读 下载PDF
Subseasonal Prediction Skill in the CAMS-CSM Subseasonal-to-Seasonal Forecast System
11
作者 Yuhan YAN Jingzhi SU +5 位作者 Boqi LIU Libin MA Xinyao RONG Bo LIU Yanli TANG Jian LI 《Advances in Atmospheric Sciences》 2025年第6期1212-1229,共18页
A subseasonal-to-seasonal(S2S) forecast system(FS) has recently been released based on the fully coupled Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM). This study evaluated the subseasonal ... A subseasonal-to-seasonal(S2S) forecast system(FS) has recently been released based on the fully coupled Chinese Academy of Meteorological Sciences Climate System Model(CAMS-CSM). This study evaluated the subseasonal prediction skill of this system via a 21-year hindcast experiment for the period 2000–20 with eight ensemble members.Results showed moderate-to-high skill for the primary atmospheric variables. The most accurate predictions emerged in the cold season but were largely confined within tropical bands as the forecast lead time was increased. Compared with the NCEP S2S FS, the CAMS-CSM S2S FS showed comparable subseasonal skill for 500-h Pa geopotential height, but slightly higher(lower) skill for precipitation(2-m temperature). The skillful lead time in the CAMS-CSM S2S FS for the Madden–Julian Oscillation and North Atlantic Oscillation reached 20 and 10 days, respectively, consistent with the NCEP S2S FS. Consequently, these findings guide future research on subseasonal predictability based on the CAMS-CSM S2S FS, and where efforts should be focused to improve the prediction system. 展开更多
关键词 subseasonal-to-seasonal forecast system CAMS-CSM subseasonal prediction skill
在线阅读 下载PDF
卫星资料的非线性反演同化与一次强降水预报试验 被引量:19
12
作者 胡文东 沈桐立 +4 位作者 丁建军 刘建军 陆晓静 陈晓娟 王承伟 《高原气象》 CSCD 北大核心 2006年第2期249-258,共10页
利用地球同步气象卫星红外资料,通过优选BP人工神经网络和最优拟合回归这两种非线性方法,建立了反演宁夏大气相对湿度场的数学模型。反演湿度场经过变分同化与质量控制后,代入中尺度数值预报模式MM5,对一次突发性强降水过程进行了预报... 利用地球同步气象卫星红外资料,通过优选BP人工神经网络和最优拟合回归这两种非线性方法,建立了反演宁夏大气相对湿度场的数学模型。反演湿度场经过变分同化与质量控制后,代入中尺度数值预报模式MM5,对一次突发性强降水过程进行了预报试验。结果表明,使用该资料后,数值预报模式对这次突发强降水过程的预报能力明显提高,模式输出产品具有预报指示意义,spin-up问题得到了一定程度的改进。 展开更多
关键词 气象卫星红外资料 非线性反演 变分同化 质量控制 强降水预报试验
在线阅读 下载PDF
低频天气图预报方法 被引量:74
13
作者 孙国武 信飞 +1 位作者 陈伯民 何金海 《高原气象》 CSCD 北大核心 2008年第B12期64-68,共5页
介绍一种新的预报方法——低频天气图,通过使用低频天气图,分析关键地区低频天气系统(低频气旋和低频反气旋)的活动特征,并根据这些活动特征预报降水过程。在2008年7-9月上海地区降水过程预报中,低频天气图预报方法的预报效果较好,且... 介绍一种新的预报方法——低频天气图,通过使用低频天气图,分析关键地区低频天气系统(低频气旋和低频反气旋)的活动特征,并根据这些活动特征预报降水过程。在2008年7-9月上海地区降水过程预报中,低频天气图预报方法的预报效果较好,且预报时效为20-40天,可以在中期和长期降水过程预报中应用。 展开更多
关键词 低频天气图 低频天气系统 降水过程
在线阅读 下载PDF
天气图相似检索研究 被引量:5
14
作者 王萍 孔秀梅 +2 位作者 杨洪敏 林孔元 刘还珠 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2004年第3期264-268,共5页
天气图中含有丰富的气象信息,这些信息的载体具有图形和数值两种不同的表现形式.针对图形类信息,构建一种特征向量,该向量突出图形特征,利于相似测度,适合于展开基于内容的检索.以此为基础,将天气图的相似检索分为基于各气象要素的检索... 天气图中含有丰富的气象信息,这些信息的载体具有图形和数值两种不同的表现形式.针对图形类信息,构建一种特征向量,该向量突出图形特征,利于相似测度,适合于展开基于内容的检索.以此为基础,将天气图的相似检索分为基于各气象要素的检索和相似综合评判两个阶段,能够满足预报业务的不同需求.另外知识库的使用使检索系统具有较小的冗余和较强的柔性. 展开更多
关键词 曲线描述 相似检索 天气图 特征向量 气象要素 相似综合评判 气象预报
在线阅读 下载PDF
边界层湍流参数化改进对雾的模拟影响 被引量:11
15
作者 黄翊 彭新东 《大气科学》 CSCD 北大核心 2017年第3期533-543,共11页
为了提高边界层参数化在我国复杂下垫面上的描述能力,改善边界层能量和物质输送计算和检验其数值模拟效果,本文选取WRF三维模式,采用基于我国不同下垫面上的边界层观测资料改进的新MYNN(Mellor-Yamada-Nakanishi-Niino)参数化方案对2009... 为了提高边界层参数化在我国复杂下垫面上的描述能力,改善边界层能量和物质输送计算和检验其数值模拟效果,本文选取WRF三维模式,采用基于我国不同下垫面上的边界层观测资料改进的新MYNN(Mellor-Yamada-Nakanishi-Niino)参数化方案对2009年3月17日黄海海雾以及2011年12月4日华北地区两次大雾过程进行模拟检验,探讨边界层参数化方案对雾和边界层结构模拟的影响。参照卫星云图和探空资料,边界层内云水混合比垂直积分的水平分布的模拟能力明显提高,反映了改进的MYNN方案能够更好地模拟出两次雾过程的发生、移动和雾区空间分布,更精确的云水混合比和温度的垂直分布能更好地给出雾区的垂直结构和稳定层结,同时可改善雾区低层位温以及比湿垂直分布的模拟。 展开更多
关键词 MYNN(Mellor-Yamada-Nakanishi-Niino)方案 湍流通量 边界层参数化 稳定层结
在线阅读 下载PDF
低频天气图预报方法的思索 被引量:5
16
作者 孙国武 冯建英 《干旱气象》 2013年第3期558-560,共3页
对当前国内推广应用低频天气图延伸期天气过程预报方法需要思考和探索的几个问题:气象服务需求、完善技术方法、今后如何发展等提出了一些见解,供推广应用低频天气图延伸期天气过程预报方法的有关省市自治区业务单位思索。
关键词 低频天气图 预报方法 思索
在线阅读 下载PDF
混沌动力学及其在干旱预测中的应用 被引量:2
17
作者 罗哲贤 马镜娴 《干旱气象》 1997年第3期3-7,共5页
本文叙述了混沌动力学产生的科学背景,混沌动力学的基本概念,以及基于混沌动力学的干旱预测的技术方法。
关键词 混沌 干旱 预测 方法
在线阅读 下载PDF
高分辨率数值预报模式并行计算方法研究 被引量:1
18
作者 杨建才 张华 金之雁 《干旱气象》 1999年第1期18-20,共3页
根据计算机软硬件条件引进开发数值模式在PVM环境下的并行版本,于1996年6月开始模式并行计算业务实验。结果表明:在数值预报中采用并行计算技术后,其CPU加速比达到3.21,并行效率达80%,模式并行计算版本运行基本... 根据计算机软硬件条件引进开发数值模式在PVM环境下的并行版本,于1996年6月开始模式并行计算业务实验。结果表明:在数值预报中采用并行计算技术后,其CPU加速比达到3.21,并行效率达80%,模式并行计算版本运行基本稳定,计算结果与串行计算结果基本一致。 展开更多
关键词 模式 并行计算 研究 应用
在线阅读 下载PDF
UFS:即将登场的美国数值天气预报的芯片诠释“统一”理念 被引量:1
19
作者 贾朋群 张萌 《气象科技进展》 2022年第3期F0003-F0003,共1页
2022年初召开的美国气象学会(AMS)第102届年会上,美国国家海洋和大气管理局(NOAA)的统一预报系统(Unified Forecast System,UFS)成为多个分会场最热的主题之一。简要回顾UFS不长的历史,一些新理念的提出,折射出已经开始并在未来将不断... 2022年初召开的美国气象学会(AMS)第102届年会上,美国国家海洋和大气管理局(NOAA)的统一预报系统(Unified Forecast System,UFS)成为多个分会场最热的主题之一。简要回顾UFS不长的历史,一些新理念的提出,折射出已经开始并在未来将不断强化的围绕被称为国家芯片的气象预报系统发展的新维度。2014年UFS的概念最早在美国出现,当时作为美国下一代预报系统(NGGPS)的组成部分,意在统一预报在“应用”层面上的编码和基础设施,让系统的编码走向开放和社区化。然而,此时因为NGGPS仅仅是NOAA,甚至具体到NWS(国家气象局),所用的开发、社区等,在意境上更多瞄准从NWS到NOAA的扩大。 展开更多
关键词 美国国家海洋 国家气象局 美国气象学会 数值天气预报 预报系统 基础设施 走向开放 简要回顾
在线阅读 下载PDF
两种CINRAD/SB天气雷达汇流环常见故障及维护技巧 被引量:1
20
作者 蓝天飞 杜世晔 +1 位作者 黄锐 董如根 《气象水文海洋仪器》 2014年第2期109-111,共3页
十堰CINRAD/SB雷达于2007年投入运行,在长时间运行中出现不少故障,其中以雷达汇流环的故障频次最高,前后更换过4次两种规格的汇流环组件,文章通过对不同材质汇流环的工作原理、基本结构、以及性能和维护重点加以阐述,以帮助提高维修人... 十堰CINRAD/SB雷达于2007年投入运行,在长时间运行中出现不少故障,其中以雷达汇流环的故障频次最高,前后更换过4次两种规格的汇流环组件,文章通过对不同材质汇流环的工作原理、基本结构、以及性能和维护重点加以阐述,以帮助提高维修人员快速判断和维护汇流环故障的能力。 展开更多
关键词 汇流环 故障 维护
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部