为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi...为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。展开更多
风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力...风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力的基础上,基于自适应Kalman滤波方法,开展针对纬向风(U)、经向风(V)的客观订正,以期建立适应山西复杂地形特征的客观预报方案,促进国产模式本地化业务应用。结果表明:①全风速预报偏大,预报误差呈“单峰型”日变化,峰值出现在18:00-20:00,正偏差主要位于忻定和太原盆地以及山西南部。②U、V预报误差与预报值呈显著正相关,需考虑不同强度预报风速误差随时效变化的特征,避免订正不足或过订正。③Kalman滤波方案(KM)订正幅度小且不稳定,订正后均方根误差R MSE削减不足6%,准确率提升不足2%。④基于动态分级的改进方案(CBKM)突破KM订正瓶颈,更准确地估计系统误差并有效订正,更好再现不同地区风速日变化,平均误差M E趋近0,R MSE削减32.8%,风向、风速预报准确率分别提升8.29%、7.92%,峰值时刻订正率达83.49%。展开更多
基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年...基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年预报结果进行了检验评估。结果表明,在研究范围内,MT-Cunet在3~9 h时效订正效果最好,平均MAE和平均RMSE分别降低42.4%、40.89%;10~24 h时效的订正效果较好,平均MAE和平均RMSE分别下降26.7%、26.3%。低温(≤0℃)和高温(≥35℃)事件检验评估表明,MT-Cunet在高温预报整体表现为正偏差,而低温整体为负偏差,但误差幅度远低于CMA-SH3;空间尺度上,MT-Cunet能较大幅度减少复杂地形下的T2m预报误差,降低CMA-SH3的MAE离散度,使预报误差分布较为稳定。通过对2022年2月和3月的区域性增温、寒潮过程分别进行检验评估发现,MT-Cunet能较好预报出增(降)温转折时间和增(降)温幅度。在增温和寒潮过程中,MT-Cunet的MAE比CMA-SH3分别降低28.9%和33.8%,表明MT-Cunet模型在转折性天气过程中同样具有较好的预报能力。因此,利用可以快速增加预报样本数量的快速更新循环数值预报,经过语义分割深度学习模型客观方法订正,就能较大幅度降低数值模式预报误差,解决常规数值预报由于数据量太少,深度学习训练效果较差的问题,这对充分利用国产模式资源,更广泛地开展国产模式后处理和应用提出了一个新的思路。展开更多
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
文摘为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。
文摘风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力的基础上,基于自适应Kalman滤波方法,开展针对纬向风(U)、经向风(V)的客观订正,以期建立适应山西复杂地形特征的客观预报方案,促进国产模式本地化业务应用。结果表明:①全风速预报偏大,预报误差呈“单峰型”日变化,峰值出现在18:00-20:00,正偏差主要位于忻定和太原盆地以及山西南部。②U、V预报误差与预报值呈显著正相关,需考虑不同强度预报风速误差随时效变化的特征,避免订正不足或过订正。③Kalman滤波方案(KM)订正幅度小且不稳定,订正后均方根误差R MSE削减不足6%,准确率提升不足2%。④基于动态分级的改进方案(CBKM)突破KM订正瓶颈,更准确地估计系统误差并有效订正,更好再现不同地区风速日变化,平均误差M E趋近0,R MSE削减32.8%,风向、风速预报准确率分别提升8.29%、7.92%,峰值时刻订正率达83.49%。
文摘基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年预报结果进行了检验评估。结果表明,在研究范围内,MT-Cunet在3~9 h时效订正效果最好,平均MAE和平均RMSE分别降低42.4%、40.89%;10~24 h时效的订正效果较好,平均MAE和平均RMSE分别下降26.7%、26.3%。低温(≤0℃)和高温(≥35℃)事件检验评估表明,MT-Cunet在高温预报整体表现为正偏差,而低温整体为负偏差,但误差幅度远低于CMA-SH3;空间尺度上,MT-Cunet能较大幅度减少复杂地形下的T2m预报误差,降低CMA-SH3的MAE离散度,使预报误差分布较为稳定。通过对2022年2月和3月的区域性增温、寒潮过程分别进行检验评估发现,MT-Cunet能较好预报出增(降)温转折时间和增(降)温幅度。在增温和寒潮过程中,MT-Cunet的MAE比CMA-SH3分别降低28.9%和33.8%,表明MT-Cunet模型在转折性天气过程中同样具有较好的预报能力。因此,利用可以快速增加预报样本数量的快速更新循环数值预报,经过语义分割深度学习模型客观方法订正,就能较大幅度降低数值模式预报误差,解决常规数值预报由于数据量太少,深度学习训练效果较差的问题,这对充分利用国产模式资源,更广泛地开展国产模式后处理和应用提出了一个新的思路。
基金supported by the National Natural Science Foundation of China(Grant No.42275060)National Natural Science Foundation for Young Scientists of China(Grant No.2021JJ10048)。
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.