利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特...利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300—200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。展开更多
2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rai...2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rainfall Measurement Mission)降水资料对该过程进行位涡诊断分析。结果表明,夏季青藏高原地表加热具有强烈的日变化。高原地表加热由白天感热加热源到夜间辐射冷却源的转变直接影响高原上空非绝热加热率的垂直梯度,使高原近地层白天有位涡耗散,夜间有位涡制造,呈现明显的昼夜循环。当夜间的位涡制造异常强,以至不为白天的耗散所抵消时,通常位涡制造的昼夜循环被破坏,高原低涡形成,低涡周围随之出现降水。当低涡中心移动至高原东部时,中心附近伴随有强烈的降水,显著的凝结潜热加热使位涡中心增强,高原低涡进一步发展。随着低涡系统继续向东移出高原,长江中下游地区中高层出现位涡平流随高度增加的大尺度动力背景,上升运动发展,最终导致强降水发生。展开更多
文摘利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300—200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。
文摘2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rainfall Measurement Mission)降水资料对该过程进行位涡诊断分析。结果表明,夏季青藏高原地表加热具有强烈的日变化。高原地表加热由白天感热加热源到夜间辐射冷却源的转变直接影响高原上空非绝热加热率的垂直梯度,使高原近地层白天有位涡耗散,夜间有位涡制造,呈现明显的昼夜循环。当夜间的位涡制造异常强,以至不为白天的耗散所抵消时,通常位涡制造的昼夜循环被破坏,高原低涡形成,低涡周围随之出现降水。当低涡中心移动至高原东部时,中心附近伴随有强烈的降水,显著的凝结潜热加热使位涡中心增强,高原低涡进一步发展。随着低涡系统继续向东移出高原,长江中下游地区中高层出现位涡平流随高度增加的大尺度动力背景,上升运动发展,最终导致强降水发生。