This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic li...This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.展开更多
This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shea...This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shear(VWS),using idealized numerical experiments.Results reveal that the SE develops greater radial extent when surface winds align with VWS compared to counter-aligned conditions.In alignment configurations,shear-enhanced surface winds on the right flank amplify surface enthalpy fluxes,thereby elevating boundary-layer entropy within the downshear outer-core region.Subsequently,more vigorous outer rainbands develop,inducing marked acceleration of tangential winds in the outer core preceding SE formation.The resultant radial expansion of supergradient winds near the boundary-layer top triggers widespread convective activity immediately beyond the inner core.Progressive axisymmetrization of this convective forcing ultimately generates an expansive SE structure.展开更多
利用台风资料、海南灾情资料、再分析资料和多种统计分析方法,确定1967—2015年影响海南岛的15个强台风事件并探析海南岛强台风事件(Hainan violent typhoon event,HNVTE)的影响因子。结果表明,HNVTE发生的气候背景信息表现为多时间尺...利用台风资料、海南灾情资料、再分析资料和多种统计分析方法,确定1967—2015年影响海南岛的15个强台风事件并探析海南岛强台风事件(Hainan violent typhoon event,HNVTE)的影响因子。结果表明,HNVTE发生的气候背景信息表现为多时间尺度因子的协同作用:1980年代后期西北太平洋副热带高压(以下简称“西北太平洋副高”)突变式变强可能为HNVTE的减少提供了年代际尺度背景,厄尔尼诺-南方涛动(El Ni o-Southern Oscillation,ENSO)和平流层准两年振荡(quasi-biennial oscillation,QBO)的共同作用提供了HNVTE变化的年际异常背景。西北太平洋副高突变前出现中等强度的La Ni a状态和突变后出现中等强度的El Ni o状态均有利于HNVTE发生,而平流层西风位相下低层强西风切变则会抑制这两种状态下的HNVTE活动。根据西北太平洋海面温度的年代际位相、ENSO循环位相及强度和QBO位相及强度构建的BEST-QBO协同作用指数能很好地识别HNVTE的发生,可为HNVTE的气候预测提供有用的信号。展开更多
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金supported by the National Natural Science Foundation of China(Grant No.42305013)Joint Research Project for Meteorological Capacity Improvement(Grant Nos.23NLTSQ002 and 24NLTSQ001)+2 种基金China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202307)the China Meteorological Administration Youth Innovation Team Fund(Grant No.CMA2024QN05)a research project of the Chinese Academy of Meteorological Science(Grant No.2023Z019)。
文摘This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.
基金jointly supported by the National Natural Science Foundation of China[grant numbers U2342202,42175005,and 42175016]the Qing Lan Project[grant number R2023Q06]。
文摘This study investigates the width of the secondary eyewall(SE)immediately following its formation in tropical cyclones with surface environmental winds aligned and counter-aligned with environmental vertical wind shear(VWS),using idealized numerical experiments.Results reveal that the SE develops greater radial extent when surface winds align with VWS compared to counter-aligned conditions.In alignment configurations,shear-enhanced surface winds on the right flank amplify surface enthalpy fluxes,thereby elevating boundary-layer entropy within the downshear outer-core region.Subsequently,more vigorous outer rainbands develop,inducing marked acceleration of tangential winds in the outer core preceding SE formation.The resultant radial expansion of supergradient winds near the boundary-layer top triggers widespread convective activity immediately beyond the inner core.Progressive axisymmetrization of this convective forcing ultimately generates an expansive SE structure.
文摘利用台风资料、海南灾情资料、再分析资料和多种统计分析方法,确定1967—2015年影响海南岛的15个强台风事件并探析海南岛强台风事件(Hainan violent typhoon event,HNVTE)的影响因子。结果表明,HNVTE发生的气候背景信息表现为多时间尺度因子的协同作用:1980年代后期西北太平洋副热带高压(以下简称“西北太平洋副高”)突变式变强可能为HNVTE的减少提供了年代际尺度背景,厄尔尼诺-南方涛动(El Ni o-Southern Oscillation,ENSO)和平流层准两年振荡(quasi-biennial oscillation,QBO)的共同作用提供了HNVTE变化的年际异常背景。西北太平洋副高突变前出现中等强度的La Ni a状态和突变后出现中等强度的El Ni o状态均有利于HNVTE发生,而平流层西风位相下低层强西风切变则会抑制这两种状态下的HNVTE活动。根据西北太平洋海面温度的年代际位相、ENSO循环位相及强度和QBO位相及强度构建的BEST-QBO协同作用指数能很好地识别HNVTE的发生,可为HNVTE的气候预测提供有用的信号。