以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,...以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,选用长江中下游流域为研究对象,针对降水、气温进行三种积云对流参数化方案KF(Kain-Fritsch)、BMJ(Betts-Miller-Janjic)及GF(Grell-Freitas)的优选,并同时从不同海拔、水汽来源两个角度对比分析三种方案产生差异的原因,从而针对不同天气型选择合适的参数化方案。结果表明:(1)选取的三种积云对流参数化方案在降水和气温模拟结果表现不同。KF方案在降水模拟中表现较好,日降水模拟相关系数为0.73~0.77;GF方案在气温模拟中表现优异,日均气温模拟相关系数为0.71~0.77。(2)三种方案在不同海拔高程的表现差异明显,KF和BMJ方案较好地展现了武陵山—大巴山一带降水与地形的对应关系。在经度剖面上,KF方案2015、2017年6月的降水模拟误差分别为5.96%、6.06%。GF方案则对地形抬升作用的描述过于强烈,导致剖面降雨量变化幅度较大。(3)三种方案模拟结果的水汽来源有所不同,KF方案显示印度洋季风带来充沛水汽,水成物含量少,云水混合比集中,更适合长江中下游流域的降水模拟;GF方案则显示南海暖湿气流较强,水成物含量多,云系发展旺盛,更适合强对流天气频发地区的降水模拟。(4)不同水汽来源对三种积云对流参数化方案模拟结果的精度影响不大。尽管2017年6月较2015年6月受到来自西太平洋的水汽影响更大,但降水模拟结果仍显示KF方案表现最佳。展开更多
黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community L...黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community Land Model)在玛多站进行模拟,使用CLM5.0改进后的三种土壤分层方案,模拟不同土壤分层对土壤冻融过程的影响,对比模拟结果与观测资料,分析改进后分层方案对陆面模式CLM5.0在黄河源区冻融过程中对土壤温湿度模拟能力的提升效果,得出以下结论:(1)调整后的三种土壤分层方案对玛多站土壤温度的模拟效果有了较好的提升,三种方案中30层方案的模拟效果最好,模拟值与观测值的平均相关系数达到了0.954,平均均方根误差为3.334℃;(2)调整后的三种土壤分层方案对玛多站土壤湿度的模拟效果也有了较为明显的提升,能够准确地捕捉各层土壤湿度在一整年内的季节性变化,受到降水影响,模拟值与实测值的波谷模拟还有偏差,三种方案中30层方案的模拟效果最好,平均相关系数为0.770,平均均方根误差为0.039 m^(3)·m^(-3);(3)对于冻结初日与消融初日的模拟,调整后的三种不同土壤分层对于冻结期与消融期模拟有明显影响,浅层模拟的冻结初始日和消融初始日均与观测值相符,而在深层对于冻结初始日和消融初始日的模拟有些偏差,较观测值有延迟,消融期也更为持久。展开更多
选取2015年6月—2018年8月玛多站观测资料作为驱动CLM5.0(Community Land Model)模式的强迫场数据,应用CLM5.0模式中不同土壤分层方案,对这一时段玛多站土壤温湿变化特征进行模拟,并检验了模拟效果。结果表明:(1)对于土壤温度,CLM5.0模...选取2015年6月—2018年8月玛多站观测资料作为驱动CLM5.0(Community Land Model)模式的强迫场数据,应用CLM5.0模式中不同土壤分层方案,对这一时段玛多站土壤温湿变化特征进行模拟,并检验了模拟效果。结果表明:(1)对于土壤温度,CLM5.0模式的4种土壤分层方案均能很好地模拟出一年中玛多站不同深度土壤温度的季节变化趋势,浅层土壤温度模拟值与观测值相关性更高,深层土壤温度模拟值的变化幅度相对较小且曲线较光滑。4种分层方案中,20层方案对土壤温度的模拟效果最好,平均相关系数为0.942。(2)对于土壤湿度,4种土壤分层方案均能较好地模拟出各层土壤湿度的季节变化和日变化趋势,但较观测值都有不同程度的偏差。20层方案对土壤湿度的模拟效果更好,平均相关系数为0.730。展开更多
陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地...陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。展开更多
文摘以往开展的基于长江流域WRF(Weather Research and Forecasting)模式的微物理过程方案参数化优选的研究,没有对长江中下游这一特定区域多个气象要素积云对流参数化方案进行优选。本研究在适合微物理过程、边界层等参数化方案的基础上,选用长江中下游流域为研究对象,针对降水、气温进行三种积云对流参数化方案KF(Kain-Fritsch)、BMJ(Betts-Miller-Janjic)及GF(Grell-Freitas)的优选,并同时从不同海拔、水汽来源两个角度对比分析三种方案产生差异的原因,从而针对不同天气型选择合适的参数化方案。结果表明:(1)选取的三种积云对流参数化方案在降水和气温模拟结果表现不同。KF方案在降水模拟中表现较好,日降水模拟相关系数为0.73~0.77;GF方案在气温模拟中表现优异,日均气温模拟相关系数为0.71~0.77。(2)三种方案在不同海拔高程的表现差异明显,KF和BMJ方案较好地展现了武陵山—大巴山一带降水与地形的对应关系。在经度剖面上,KF方案2015、2017年6月的降水模拟误差分别为5.96%、6.06%。GF方案则对地形抬升作用的描述过于强烈,导致剖面降雨量变化幅度较大。(3)三种方案模拟结果的水汽来源有所不同,KF方案显示印度洋季风带来充沛水汽,水成物含量少,云水混合比集中,更适合长江中下游流域的降水模拟;GF方案则显示南海暖湿气流较强,水成物含量多,云系发展旺盛,更适合强对流天气频发地区的降水模拟。(4)不同水汽来源对三种积云对流参数化方案模拟结果的精度影响不大。尽管2017年6月较2015年6月受到来自西太平洋的水汽影响更大,但降水模拟结果仍显示KF方案表现最佳。
文摘黄河源是黄河流域重要的水源涵养区,研究不同土壤分层对冻融过程模拟结果的影响,提高模式对水热输送过程的模拟能力,对高寒地区冻融过程的研究有着重要意义。本文利用黄河源区玛多站的观测数据作为强迫场驱动陆面模式CLM5.0(Community Land Model)在玛多站进行模拟,使用CLM5.0改进后的三种土壤分层方案,模拟不同土壤分层对土壤冻融过程的影响,对比模拟结果与观测资料,分析改进后分层方案对陆面模式CLM5.0在黄河源区冻融过程中对土壤温湿度模拟能力的提升效果,得出以下结论:(1)调整后的三种土壤分层方案对玛多站土壤温度的模拟效果有了较好的提升,三种方案中30层方案的模拟效果最好,模拟值与观测值的平均相关系数达到了0.954,平均均方根误差为3.334℃;(2)调整后的三种土壤分层方案对玛多站土壤湿度的模拟效果也有了较为明显的提升,能够准确地捕捉各层土壤湿度在一整年内的季节性变化,受到降水影响,模拟值与实测值的波谷模拟还有偏差,三种方案中30层方案的模拟效果最好,平均相关系数为0.770,平均均方根误差为0.039 m^(3)·m^(-3);(3)对于冻结初日与消融初日的模拟,调整后的三种不同土壤分层对于冻结期与消融期模拟有明显影响,浅层模拟的冻结初始日和消融初始日均与观测值相符,而在深层对于冻结初始日和消融初始日的模拟有些偏差,较观测值有延迟,消融期也更为持久。
文摘选取2015年6月—2018年8月玛多站观测资料作为驱动CLM5.0(Community Land Model)模式的强迫场数据,应用CLM5.0模式中不同土壤分层方案,对这一时段玛多站土壤温湿变化特征进行模拟,并检验了模拟效果。结果表明:(1)对于土壤温度,CLM5.0模式的4种土壤分层方案均能很好地模拟出一年中玛多站不同深度土壤温度的季节变化趋势,浅层土壤温度模拟值与观测值相关性更高,深层土壤温度模拟值的变化幅度相对较小且曲线较光滑。4种分层方案中,20层方案对土壤温度的模拟效果最好,平均相关系数为0.942。(2)对于土壤湿度,4种土壤分层方案均能较好地模拟出各层土壤湿度的季节变化和日变化趋势,但较观测值都有不同程度的偏差。20层方案对土壤湿度的模拟效果更好,平均相关系数为0.730。
文摘陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。