Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
The study of extreme weather and space events has gained paramount importance in modern society owing to rapid advances in high technology.Understanding and describing exceptional occurrences plays a crucial role in m...The study of extreme weather and space events has gained paramount importance in modern society owing to rapid advances in high technology.Understanding and describing exceptional occurrences plays a crucial role in making decisive assessments of their potential impact on technical,economic,and social aspects in various fields.This research focuses on analyzing the hourly values of the auroral electrojet(AE)geomagnetic index from 1957 to 2019 by using the peak over threshold method in extreme value theory.By fitting the generalized Pareto distribution to extreme AE values,shape parameter indices were derived,revealing negative values that establish an upper bound for this time series.Consequently,it became evident that the AE values had reached a plateau,suggesting that extreme events exceeding the established upper limit are rare.As a result,although the need for diligent precautions to mitigate the consequences of such extreme events persists,surpassing the upper limit of AE values becomes increasingly challenging.It is also possible to observe an aurora in the middle-and low-latitude regions during the maximum period of the AE index.展开更多
基金supported by the National Natural Science Foundation of China (42388101)the CAS Youth Interdisciplinary Team (JCTD-2021-05)funded by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.
文摘The study of extreme weather and space events has gained paramount importance in modern society owing to rapid advances in high technology.Understanding and describing exceptional occurrences plays a crucial role in making decisive assessments of their potential impact on technical,economic,and social aspects in various fields.This research focuses on analyzing the hourly values of the auroral electrojet(AE)geomagnetic index from 1957 to 2019 by using the peak over threshold method in extreme value theory.By fitting the generalized Pareto distribution to extreme AE values,shape parameter indices were derived,revealing negative values that establish an upper bound for this time series.Consequently,it became evident that the AE values had reached a plateau,suggesting that extreme events exceeding the established upper limit are rare.As a result,although the need for diligent precautions to mitigate the consequences of such extreme events persists,surpassing the upper limit of AE values becomes increasingly challenging.It is also possible to observe an aurora in the middle-and low-latitude regions during the maximum period of the AE index.