This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches tha...This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches that descended from the analyzed gully,as reported in the literature from the 1900s until now.However,only the data collected in recent years,our field studies,combined with modern LIDAR data and GIS-based modeling,allowed us to perform a detailed analysis.The GIS-based approach effectively uses spatial data to address snow avalanche modeling challenges.Although the study area lies within Tatra National Park,no official services carry out systematic avalanche monitoring or measurements.The impact of hazardous events,such as snow avalanches,on the most famous Polish mountain lake,Morskie Oko,has been poorly described in the literature and has yet to be discovered.Therefore,to analyze the selected avalanche parameters,we mainly used our ground and additional aerial photographs taken by local mountain services and related field measurements.Our analysis resulted in figurative estimates of the extent and volume of avalanche snow and its weight,both on the surface of the ice sheet and the part of the avalanche that did not reach the lake's shore and remained on the slope of Marchwiczny Gully.For example,the values for the mighty avalanche on February 3,2023,are 23,500 m~3 and 4,700 tons on the ice surface and 20,000 m~3 and 4,000 tons on the slope.It was determined that avalanches that descend onto the studied lake's surface result in its shallowing.This process occurs because of sedimentation of slope material carried by avalanches,especially during the final phase of ice cover melting.When openings appear in the solid ice cover in spring,floating ice can migrate,driven by wind pressure,and deposit avalanche material in various parts of the lake bottom.Thus,avalanches contributed to the gradual disappearance of the lake.展开更多
Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris fl...Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.展开更多
0 INTRODUCTION Global warming not only exacerbates the instability of the climate system,causing more weather extremes but also has far-reaching impacts on surface systems,changing disaster environments(Qiu et al.,202...0 INTRODUCTION Global warming not only exacerbates the instability of the climate system,causing more weather extremes but also has far-reaching impacts on surface systems,changing disaster environments(Qiu et al.,2024;Ye et al.,2024).The key medium between climate warming and the mountain environment is the cryosphere,whose recession increases the occurrence of chain disasters such as rock-ice avalanches and other flow events(Yang et al.,2023).展开更多
文摘This study represents a pioneering effort to analyze the impact of avalanches descending into Morskie Oko from Marchwiczny Gully,the most active avalanche path around the lake.It focuses on catastrophic avalanches that descended from the analyzed gully,as reported in the literature from the 1900s until now.However,only the data collected in recent years,our field studies,combined with modern LIDAR data and GIS-based modeling,allowed us to perform a detailed analysis.The GIS-based approach effectively uses spatial data to address snow avalanche modeling challenges.Although the study area lies within Tatra National Park,no official services carry out systematic avalanche monitoring or measurements.The impact of hazardous events,such as snow avalanches,on the most famous Polish mountain lake,Morskie Oko,has been poorly described in the literature and has yet to be discovered.Therefore,to analyze the selected avalanche parameters,we mainly used our ground and additional aerial photographs taken by local mountain services and related field measurements.Our analysis resulted in figurative estimates of the extent and volume of avalanche snow and its weight,both on the surface of the ice sheet and the part of the avalanche that did not reach the lake's shore and remained on the slope of Marchwiczny Gully.For example,the values for the mighty avalanche on February 3,2023,are 23,500 m~3 and 4,700 tons on the ice surface and 20,000 m~3 and 4,000 tons on the slope.It was determined that avalanches that descend onto the studied lake's surface result in its shallowing.This process occurs because of sedimentation of slope material carried by avalanches,especially during the final phase of ice cover melting.When openings appear in the solid ice cover in spring,floating ice can migrate,driven by wind pressure,and deposit avalanche material in various parts of the lake bottom.Thus,avalanches contributed to the gradual disappearance of the lake.
基金granted by the National Natural Science Foundation of China(Grant Nos.U2244227 and U2244226)the National Key R&D Program of China(Grant No.2022YFC3004301)China Geological Survey Project(Grant No.DD20230538)。
文摘Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.
基金funded by the National Natural Science Foundation of China(No.42271078)Key Research and Development Program of Shaanxi(No.2024SF-YBXM-669).
文摘0 INTRODUCTION Global warming not only exacerbates the instability of the climate system,causing more weather extremes but also has far-reaching impacts on surface systems,changing disaster environments(Qiu et al.,2024;Ye et al.,2024).The key medium between climate warming and the mountain environment is the cryosphere,whose recession increases the occurrence of chain disasters such as rock-ice avalanches and other flow events(Yang et al.,2023).