随着气候变化加剧干旱风险,精准监测干旱对水资源管理和生态保护至关重要。标准化蒸散发亏缺指数(SEDI)与标准化降水蒸散指数(SPEI)作为新一代干旱监测指标,其适用性研究具有显著的理论与应用价值。文中基于CiteSpace软件对2010—2025年...随着气候变化加剧干旱风险,精准监测干旱对水资源管理和生态保护至关重要。标准化蒸散发亏缺指数(SEDI)与标准化降水蒸散指数(SPEI)作为新一代干旱监测指标,其适用性研究具有显著的理论与应用价值。文中基于CiteSpace软件对2010—2025年间CNKI与Web of Science核心数据库的652篇中英文文献进行可视化分析,系统梳理了SEDI与SPEI的研究趋势、热点及区域适用性。核心发现与突破在于:1)机理互补与精度提升:SEDI基于实际蒸散发亏缺(P-AET),对植被水分胁迫高度敏感,在干旱半干旱区(PET/P>1.5)监测误差较传统指数降低62%;SPEI基于降水与潜在蒸散差值(P-PET),在多时间尺度气象干旱表征中误差降低35%,突破SPI忽视温度影响、PDSI参数复杂的局限。2)动态阈值模型的突破:基于Budyko水热耦合理论,创新性建立了以PET/P比值为核心的动态阈值模型(阈值1.5),明确了干旱半干旱区优先适用SEDI、湿润区优选SPEI、过渡区需双指数交叉验证的区域适用原则,显著提升了不同气候区干旱监测的针对性和准确性。3)实际应用成果:研究表明,SEDI在季风区雨季可提前2—3周识别干旱信号,为农业灌溉决策提供关键时间窗口;融合高分卫星数据的SEDI/SPEI协同应用在国内已实现30m/日级高精度监测,为黄河流域等脆弱生态区干旱风险管理提供了有力支撑。由此可见,SEDI与SPEI通过其互补机理与区域适配性,在提升干旱监测精度、时效性及生态响应表征方面取得了实质性突破,但仍需在复杂下垫面适应性、数据融合模型等方面深化研究。展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study ut...Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study utilized observational data and two new generation reanalysis products(i.e.,the fifth major global reanalysis produced by ECMWF(ERA5)and the Japanese Reanalysis for Three Quarters of a Century(JRA-3Q))to investigate the shift changes in precipitation in NEC around 2000 and associated water vapor transport.The analysis identified a pivotal interdecadal shift in 1998/99,transitioning from moderate increases(17.5 mm/10 yr during 1980-1998)to accelerated but more variable precipitation growth(85.4 mm/10 yr post-1999).While the mean precipitation during the post-shift period decreased,enhanced anticyclonic circulation amplified moisture divergence over continental NEC,redirecting vapor flux toward coastal regions.Crucially,trajectory analysis demonstrated regime-dependent moisture sourcing:midlatitude westerlies dominated during wet extremes(44% of trajectories in 1998),whereas East Asian monsoon flows prevailed in drought years(36% of trajectories in 2007).The post-1998 period exhibited increased reliance on localized recycling(45%of mid-tropospheric trajectories),reflecting weakened monsoonal inflow.These findings highlight NEC’s growing vulnerability to competing moisture pathways and atmospheric blocking-a dual mechanism that explains rising extremes despite declining mean precipitation.By reconciling dataset discrepancies(ERA5 vs.JRA-3Q trends)and elucidating circulation-precipitation linkages,this work provides actionable insights for climate-resilient agriculture in NEC’s water-stressed ecosystems.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the...Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.展开更多
文摘随着气候变化加剧干旱风险,精准监测干旱对水资源管理和生态保护至关重要。标准化蒸散发亏缺指数(SEDI)与标准化降水蒸散指数(SPEI)作为新一代干旱监测指标,其适用性研究具有显著的理论与应用价值。文中基于CiteSpace软件对2010—2025年间CNKI与Web of Science核心数据库的652篇中英文文献进行可视化分析,系统梳理了SEDI与SPEI的研究趋势、热点及区域适用性。核心发现与突破在于:1)机理互补与精度提升:SEDI基于实际蒸散发亏缺(P-AET),对植被水分胁迫高度敏感,在干旱半干旱区(PET/P>1.5)监测误差较传统指数降低62%;SPEI基于降水与潜在蒸散差值(P-PET),在多时间尺度气象干旱表征中误差降低35%,突破SPI忽视温度影响、PDSI参数复杂的局限。2)动态阈值模型的突破:基于Budyko水热耦合理论,创新性建立了以PET/P比值为核心的动态阈值模型(阈值1.5),明确了干旱半干旱区优先适用SEDI、湿润区优选SPEI、过渡区需双指数交叉验证的区域适用原则,显著提升了不同气候区干旱监测的针对性和准确性。3)实际应用成果:研究表明,SEDI在季风区雨季可提前2—3周识别干旱信号,为农业灌溉决策提供关键时间窗口;融合高分卫星数据的SEDI/SPEI协同应用在国内已实现30m/日级高精度监测,为黄河流域等脆弱生态区干旱风险管理提供了有力支撑。由此可见,SEDI与SPEI通过其互补机理与区域适配性,在提升干旱监测精度、时效性及生态响应表征方面取得了实质性突破,但仍需在复杂下垫面适应性、数据融合模型等方面深化研究。
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
基金supported by the National Natural Science Foundation of China[grant numbers 42275185 and 42205032]the Fundamental Research Funds for the Central Universities[grant number B250201118]。
文摘Northeast China(NEC),a critical agricultural and ecological zone,has experienced intensified hydrological variability under global warming,with cascading impacts on food security and ecosystem resilience.This study utilized observational data and two new generation reanalysis products(i.e.,the fifth major global reanalysis produced by ECMWF(ERA5)and the Japanese Reanalysis for Three Quarters of a Century(JRA-3Q))to investigate the shift changes in precipitation in NEC around 2000 and associated water vapor transport.The analysis identified a pivotal interdecadal shift in 1998/99,transitioning from moderate increases(17.5 mm/10 yr during 1980-1998)to accelerated but more variable precipitation growth(85.4 mm/10 yr post-1999).While the mean precipitation during the post-shift period decreased,enhanced anticyclonic circulation amplified moisture divergence over continental NEC,redirecting vapor flux toward coastal regions.Crucially,trajectory analysis demonstrated regime-dependent moisture sourcing:midlatitude westerlies dominated during wet extremes(44% of trajectories in 1998),whereas East Asian monsoon flows prevailed in drought years(36% of trajectories in 2007).The post-1998 period exhibited increased reliance on localized recycling(45%of mid-tropospheric trajectories),reflecting weakened monsoonal inflow.These findings highlight NEC’s growing vulnerability to competing moisture pathways and atmospheric blocking-a dual mechanism that explains rising extremes despite declining mean precipitation.By reconciling dataset discrepancies(ERA5 vs.JRA-3Q trends)and elucidating circulation-precipitation linkages,this work provides actionable insights for climate-resilient agriculture in NEC’s water-stressed ecosystems.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program[grant number-ber 2019QZKK0103]the National Natural Science Foundation of China[grant number 42293294]the China Meteorological Admin-istration Climate Change Special Program[grant number QBZ202303]。
文摘Using multi-source reanalysis data,this study examines the relationship between the tropical Pacific-Atlantic SST Dipole Mode(TPA-DM)and summer precipitation in North China(NCSP)on the interannual timescale during the period of 1979-2022.The results show that the TPA-DM,the dominant pattern of interannual variability in the tropical Pacific and Atlantic regions,exhibits a significant negative correlation with NCSP.The positive phase of TPA-DM induces subsidence over the Maritime Continent through a zonal circulation pattern,which initiates a Pacific-Japan-like wave train along the East Asian coast.The circulation anomalies lead to moisture deficits and convergence subsidence over North China,leading to below-normal rainfall.Further analysis reveals that cooler SST in the Southern Tropical Atlantic facilitates the persistence of the TPA-DM by stimulating the anomalous Walker circulation associated with wind-evaporation-SST-convection feedback.