本文研究了2000年10月5日磁暴主相两个不同时段期间环电流的变化速度与相应太阳风参数的关系.研究发现,磁暴主相期间环电流的变化速度并不取决于行星际磁场南向分量的平均值和最大值,也不取决于太阳风电场的平均值和最大值.本文的研究证...本文研究了2000年10月5日磁暴主相两个不同时段期间环电流的变化速度与相应太阳风参数的关系.研究发现,磁暴主相期间环电流的变化速度并不取决于行星际磁场南向分量的平均值和最大值,也不取决于太阳风电场的平均值和最大值.本文的研究证明,磁暴环电流增强期间环电流的变化速度,不仅取决于行星际磁场南向分量和太阳风的速度,还取决于太阳风的动压,而且太阳风的动压起着非常重要的作用.研究还发现,采用Burton et al.(1975)方程和O′Brien,McPherron (2000a)方程估算得到的2000年10月5日的两次地磁活动的强度远低于实际的观测值.展开更多
This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar...This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar-orbiting(Swarm)and low-inclination(MSS-1)satellites in geomagnetic modelling and monitoring large-scale magnetospheric contributions.Data from close encounters between MSS-1 and Swarm(intersatellite distance<100 km)confirm the excellent data quality of the two satellite missions(<1 nT median difference in scalar intensity F)and allow for data calibration and validation and investigations of in-situ ionospheric currents.The reason for a small but consistent difference(F as measured by MSS-1 is 0.5 to 1.0 nT larger than that measured by Swarm)is unknown.Combining MSS-1’s low-inclination data with Swarm’s near-polar observations significantly enhances the spatial-temporal resolution of Earth’s magnetic field models,allowing for new opportunities for studying both rapid core field variations at low latitudes and the local-time dependence of large-scale magnetospheric current systems.A joint analysis of magnetic data from six satellites during the May 2024 geomagnetic storm reveals a clear dawn-dusk asymmetry,with equatorial magnetic disturbances during dusk being approximately 150 nT more negative than during dawn.展开更多
In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2...In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagneti...Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.展开更多
The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on ...The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.展开更多
文摘本文研究了2000年10月5日磁暴主相两个不同时段期间环电流的变化速度与相应太阳风参数的关系.研究发现,磁暴主相期间环电流的变化速度并不取决于行星际磁场南向分量的平均值和最大值,也不取决于太阳风电场的平均值和最大值.本文的研究证明,磁暴环电流增强期间环电流的变化速度,不仅取决于行星际磁场南向分量和太阳风的速度,还取决于太阳风的动压,而且太阳风的动压起着非常重要的作用.研究还发现,采用Burton et al.(1975)方程和O′Brien,McPherron (2000a)方程估算得到的2000年10月5日的两次地磁活动的强度远低于实际的观测值.
基金the China National Space Administration (CNSA) and the Macao Foundation for operating the MSS-1satelliteThis work has been carried out as part of ESA’s Swarm DISC activities funded by ESA contract no.4000109587.
文摘This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar-orbiting(Swarm)and low-inclination(MSS-1)satellites in geomagnetic modelling and monitoring large-scale magnetospheric contributions.Data from close encounters between MSS-1 and Swarm(intersatellite distance<100 km)confirm the excellent data quality of the two satellite missions(<1 nT median difference in scalar intensity F)and allow for data calibration and validation and investigations of in-situ ionospheric currents.The reason for a small but consistent difference(F as measured by MSS-1 is 0.5 to 1.0 nT larger than that measured by Swarm)is unknown.Combining MSS-1’s low-inclination data with Swarm’s near-polar observations significantly enhances the spatial-temporal resolution of Earth’s magnetic field models,allowing for new opportunities for studying both rapid core field variations at low latitudes and the local-time dependence of large-scale magnetospheric current systems.A joint analysis of magnetic data from six satellites during the May 2024 geomagnetic storm reveals a clear dawn-dusk asymmetry,with equatorial magnetic disturbances during dusk being approximately 150 nT more negative than during dawn.
基金supported by the National Natural Science Foundation of China(Grant Nos.42474200 and 42174186)Chao Xiong is supported by the Dragon 6 cooperation 2024-2028(Project No.95437).
文摘In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
基金funded by NSFC under grants 12250014, 42250101 and 12403068supported by youth funding of Jiangsu province BK20241707+1 种基金supported by the Macao FoundationXinjiang Uygur Autonomous Region for the support through “Tianchi Talent” special expert project。
文摘Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.
基金supported by the National Natural Science Foundation of China(Grant Nos.12250013,12403070,12425306,42250101,12273092)the Macao Foundation,and Shanghai Post-doctoral Excellence Program(Grant No.2023000137)。
文摘The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.