The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods fro...The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods from the data collected by the SiTian pathfinder project Mini-SiTian(MST).The pipeline is applied to the MST f02 region,an MST test region with a sky area of 2°.29×1°.53.Rotation periods of 22 asteroids are derived by the obtained light curve analysis.Among them,there are eight asteroids available in the Asteroid Lightcurve Photometry Database(ALCDEF),and six of them with more photometric points(>200)that have similar period parameters as the ones in ALCDEF.Additionally,the periods for 14 of these asteroids are newly obtained and are not listed in ALCDEF.This study demonstrates the feasibility of asteroid photometric research by the SiTian project.It shows that future observations from the SiTian project will provide even more photometry of asteroids,significantly increasing the number of available light curves.The potential vast photometric data on asteroids will help us to further understand the physics of asteroids,their material composition,and the formation and evolution of the solar system.展开更多
The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2....The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2.4 m telescope with a Johnson R filter,we measured the brightness of 2013 LU28 from 2024 January 3 to April 13.The instrumental magnitudes were subsequently transformed into the Pan-STARRS r system.Due to the noticeable descending trend in the absolute magnitude,we verified the cometary activity and constrained some photometric properties of 2013 LU28.Consequently,the increased cross-sectional area had a rate of 42.8 km^(2)day^(−1),and the corresponding mass-loss rate was 2.64 kg s^(−1)with the assumption of a dust-particle size a=10 mm and the densityρ=400 kg m^(−3).We estimated the nucleus radius as 0.11■r_(n)■0.21 km for CO sublimation and 0.20■r_(n)■0.71 km for CO_(2)sublimation and the grain size of 2013 LU28 was ac;117.95μm for CO and ac■7.57μm for CO_(2).The long-term observations provided in this paper will offer significant value for investigating the mechanisms driving the activity of 2013 LU28.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of ...NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of Fe-Ni metal.The meteorite has also undergone intense shock metamorphism,which is evidenced by the presence of ringwoodite,tuite,and xieite(a type of chromite with a CaTi_(2)O_(4)structure)within the shock melt veins(SMVs).The texture,mineral modal abundances,and bulk compositions(measured from the SMVs)of NWA 6950 are similar to those of the NWA 773 clan,as are the concentrations and patterns of rare-earth-elements in olivine,pyroxene,plagioclase,and phosphate.In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3133±11 and 3129±23 Ma,which is consistent with age data provided by Shaulis et al.(2017).Further,the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333(3038±20 Ma;Merle et al.,2020).The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon.This suggests that lunar volcanism may have shifted from extrusivedominated to intrusive-dominated at approximately 3.1 Ga,resulting in the widespread distribution of gabbro lithologies on the Moon.展开更多
The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of th...The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of them were approved as new minerals which include tuite,xieite,wangdaodeite,chenmingite,hemleyite,poirierite,asimowite,hiroseite,elgoresyite,and ohtaniite,by the Commission on New Minerals,Nomenclature and Classification of the International Mineralogical Association.Other high-pressure phases identified from the meteorite are ahrensite,akimotoite,bridgmanite,lingunite,magnesiowüstite,majorite,majorite-pyrope_(ss),maskelynite,riesite,ringwoodite,wadsleyite,and 5 other phases including phase A,vitrified phase B and phase C,phase D(Ca-rich majorite),and partly inverted ringwoodite.The occurrence and abundance of high-pressure phases makes this meteorite the one with the richest variety of high-pressure minerals to date.展开更多
NWA 16080 is a representative reduced CV carbonaceous chondrite(CV_(red)),consisting mainly of chon-drules(47 vol%)and matrix(42 vol%),along with minor quantities of calcium-and aluminum-rich inclusions(CAI)and amoebo...NWA 16080 is a representative reduced CV carbonaceous chondrite(CV_(red)),consisting mainly of chon-drules(47 vol%)and matrix(42 vol%),along with minor quantities of calcium-and aluminum-rich inclusions(CAI)and amoeboid olivine aggregates(AOA)(CAI+AOA,6 vol%)and opaque minerals(5 vol%).The chondrules exhibit well-preserved outlines and can be categorized into Type Ⅰ(Fa<10)and Type Ⅱ(Fa>10).They primarily consist of magnesium-rich olivine,along with both low-Ca and high-Ca pyroxenes,and contain minor amounts of secondary plagioclase.Olivines present in chondrules display compositional zoning characterized whereas the matrix is composed of fine-grained olivine.Nickel-rich metal and nickel-poor sulfides are also present,along with trace amounts of magnetite.In contrast to standard oxidized CV chondrites(CV_(ox)),the presence of high metal,Ni-poor sulfides,and reduced magnetite in NWA 16080 indicates a more reduced parent-body environment.Shock metamorphism is classified as mild(S1),while terrestrial weathering is characterized as low(W2).Raman spectroscopy indicates a diverse spectrum of organic matter(OM)maturity:certain areas exhibit characteristics akin to other CV_(red) chondrites,whereas others reach maturity levels comparable to those observed in CV_(ox) chondrites.The Raman parameters indicate that this meteorite is classified as approximately type 3.4 to 3.5.The overlapping OM maturity with certain CV_(ox) chondrites provides a contradiction to the anticipated depth-thermal layering outlined in the onion-shell model.This suggests that the CV parent body probably experienced more intricate processes,including impacts and fluid-rock interactions,rather than merely depth-dependent heating.展开更多
A uniquely shaped impact structure,the Hailin impact crater,has been discovered in northeast China.The crater was formed on a granodiorite hillside and is an oval depression with asymmetric rim height and a maximum di...A uniquely shaped impact structure,the Hailin impact crater,has been discovered in northeast China.The crater was formed on a granodiorite hillside and is an oval depression with asymmetric rim height and a maximum diameter of 1360 m.The bottom of the crater is filled by Quaternary sediments with large amounts of rock fragments underneath.The discovery of quartz planar deformation features in rock clasts on the crater floor provides diagnostic evidence for the impact origin of the structure.The shape of the crater is largely due to the impact having occurred on a ridge terrain.The impact event probably occurred in the late Cenozoic Era.The Hailin impact crater is the fourth confirmed Chinese impact crater.展开更多
This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS...This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.展开更多
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an...Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.展开更多
基金supports from the National Natural Science Foundation of China(NSFC,grant Nos.12203002 and 11973015)supports from the National Key Basic R&D Program of China via 2023YFA1608303 and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+6 种基金supports from the National Natural Science Foundation of China(NSFCgrant No.12373015)supports from the National Natural Science Foundation of China(NSFCgrant Nos.12120101003 and 12373010)National Key R&D Program of China(grant Nos.2023YFA1607800,2023YFA1607804,2022YFA1602902)Beijing Municipal Natural Science Foundation(grant No.1222028)Strategic Priority Research Program of the Chinese Academy of Science(grant Nos.XDB0550100 and XDB0550000).
文摘The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods from the data collected by the SiTian pathfinder project Mini-SiTian(MST).The pipeline is applied to the MST f02 region,an MST test region with a sky area of 2°.29×1°.53.Rotation periods of 22 asteroids are derived by the obtained light curve analysis.Among them,there are eight asteroids available in the Asteroid Lightcurve Photometry Database(ALCDEF),and six of them with more photometric points(>200)that have similar period parameters as the ones in ALCDEF.Additionally,the periods for 14 of these asteroids are newly obtained and are not listed in ALCDEF.This study demonstrates the feasibility of asteroid photometric research by the SiTian project.It shows that future observations from the SiTian project will provide even more photometry of asteroids,significantly increasing the number of available light curves.The potential vast photometric data on asteroids will help us to further understand the physics of asteroids,their material composition,and the formation and evolution of the solar system.
基金Funding for the telescope has been provided by CAS and the People’s Government of Yunnan Provincefunded by the Civil Aerospace pre-research project D020302+2 种基金National Natural Science Foundation of China (U12150009,12150009)the CAS Light of West China Programthe science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B10
文摘The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2.4 m telescope with a Johnson R filter,we measured the brightness of 2013 LU28 from 2024 January 3 to April 13.The instrumental magnitudes were subsequently transformed into the Pan-STARRS r system.Due to the noticeable descending trend in the absolute magnitude,we verified the cometary activity and constrained some photometric properties of 2013 LU28.Consequently,the increased cross-sectional area had a rate of 42.8 km^(2)day^(−1),and the corresponding mass-loss rate was 2.64 kg s^(−1)with the assumption of a dust-particle size a=10 mm and the densityρ=400 kg m^(−3).We estimated the nucleus radius as 0.11■r_(n)■0.21 km for CO sublimation and 0.20■r_(n)■0.71 km for CO_(2)sublimation and the grain size of 2013 LU28 was ac;117.95μm for CO and ac■7.57μm for CO_(2).The long-term observations provided in this paper will offer significant value for investigating the mechanisms driving the activity of 2013 LU28.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
基金supported by a pre-research project on Civil Aerospace Technologies funded by CNSA(No.D020205)the Natural Science Foundation of China(Nos.42241156)+1 种基金the CUG outstanding youth team project(No.G1323523042)the Central Public-interest Scientific Institution Basal Research Fund for Institute of Geology,CAGS(No.J1904)。
文摘NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of Fe-Ni metal.The meteorite has also undergone intense shock metamorphism,which is evidenced by the presence of ringwoodite,tuite,and xieite(a type of chromite with a CaTi_(2)O_(4)structure)within the shock melt veins(SMVs).The texture,mineral modal abundances,and bulk compositions(measured from the SMVs)of NWA 6950 are similar to those of the NWA 773 clan,as are the concentrations and patterns of rare-earth-elements in olivine,pyroxene,plagioclase,and phosphate.In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3133±11 and 3129±23 Ma,which is consistent with age data provided by Shaulis et al.(2017).Further,the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333(3038±20 Ma;Merle et al.,2020).The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon.This suggests that lunar volcanism may have shifted from extrusivedominated to intrusive-dominated at approximately 3.1 Ga,resulting in the widespread distribution of gabbro lithologies on the Moon.
基金Science and Technology Planning Project of Guangdong Province(2023B1212060048).
文摘The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of them were approved as new minerals which include tuite,xieite,wangdaodeite,chenmingite,hemleyite,poirierite,asimowite,hiroseite,elgoresyite,and ohtaniite,by the Commission on New Minerals,Nomenclature and Classification of the International Mineralogical Association.Other high-pressure phases identified from the meteorite are ahrensite,akimotoite,bridgmanite,lingunite,magnesiowüstite,majorite,majorite-pyrope_(ss),maskelynite,riesite,ringwoodite,wadsleyite,and 5 other phases including phase A,vitrified phase B and phase C,phase D(Ca-rich majorite),and partly inverted ringwoodite.The occurrence and abundance of high-pressure phases makes this meteorite the one with the richest variety of high-pressure minerals to date.
基金supported by National Natural Science Foundation of China(grant no.42403041)Scientific Base and Talent Special Projects of Guangxi(grant no.AD23026084)Scientific Research Foundation of Guilin University of Technology(GUTQDJJ6614023).
文摘NWA 16080 is a representative reduced CV carbonaceous chondrite(CV_(red)),consisting mainly of chon-drules(47 vol%)and matrix(42 vol%),along with minor quantities of calcium-and aluminum-rich inclusions(CAI)and amoeboid olivine aggregates(AOA)(CAI+AOA,6 vol%)and opaque minerals(5 vol%).The chondrules exhibit well-preserved outlines and can be categorized into Type Ⅰ(Fa<10)and Type Ⅱ(Fa>10).They primarily consist of magnesium-rich olivine,along with both low-Ca and high-Ca pyroxenes,and contain minor amounts of secondary plagioclase.Olivines present in chondrules display compositional zoning characterized whereas the matrix is composed of fine-grained olivine.Nickel-rich metal and nickel-poor sulfides are also present,along with trace amounts of magnetite.In contrast to standard oxidized CV chondrites(CV_(ox)),the presence of high metal,Ni-poor sulfides,and reduced magnetite in NWA 16080 indicates a more reduced parent-body environment.Shock metamorphism is classified as mild(S1),while terrestrial weathering is characterized as low(W2).Raman spectroscopy indicates a diverse spectrum of organic matter(OM)maturity:certain areas exhibit characteristics akin to other CV_(red) chondrites,whereas others reach maturity levels comparable to those observed in CV_(ox) chondrites.The Raman parameters indicate that this meteorite is classified as approximately type 3.4 to 3.5.The overlapping OM maturity with certain CV_(ox) chondrites provides a contradiction to the anticipated depth-thermal layering outlined in the onion-shell model.This suggests that the CV parent body probably experienced more intricate processes,including impacts and fluid-rock interactions,rather than merely depth-dependent heating.
基金financial support from the Shanghai Key Laboratory Novel Extreme Condition Materials,China(Grant No.22dz2260800)the Shanghai Science and Technology Committee,China(Grant No.22JC1410300)。
文摘A uniquely shaped impact structure,the Hailin impact crater,has been discovered in northeast China.The crater was formed on a granodiorite hillside and is an oval depression with asymmetric rim height and a maximum diameter of 1360 m.The bottom of the crater is filled by Quaternary sediments with large amounts of rock fragments underneath.The discovery of quartz planar deformation features in rock clasts on the crater floor provides diagnostic evidence for the impact origin of the structure.The shape of the crater is largely due to the impact having occurred on a ridge terrain.The impact event probably occurred in the late Cenozoic Era.The Hailin impact crater is the fourth confirmed Chinese impact crater.
基金The ATLAS project is primarily funded to search for near-earth asteroids through NASA grants NN12AR55G,80NSSC18K0284,and 80NSSC18K1575funded by Kepler/K2 grant J1944/80NSSC19K0112 and HST GO-15889,and STFC grants ST/T000198/1 and ST/S006109/1。
文摘This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.
基金EP-A and JMT-R acknowledges financial support from the project PID2021-128062NB-I00 funded by MCIN/AEI/10.13039/501100011033The lunar samples studied here were acquired in the framework of grant PGC2018-097374-B-I00(P.I.JMT-R)+3 种基金This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.865657)for the project“Quantum Chemistry on Interstellar Grains”(QUANTUMGRAIN),AR acknowledges financial support from the FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación(No.PID2021-126427NB-I00)Partial financial support from the Spanish Government(No.PID2020-116844RB-C21)the Generalitat de Catalunya(No.2021-SGR-00651)is acknowledgedThis work was supported by the LUMIO project funded by the Agenzia Spaziale Italiana(No.2024-6-HH.0).
文摘Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.