Before solar eruptions,a short-term slow-rise phase is often observed,during which the pre-eruption structure ascends at speeds much greater than the photospheric motions but much less than those of the eruption phase...Before solar eruptions,a short-term slow-rise phase is often observed,during which the pre-eruption structure ascends at speeds much greater than the photospheric motions but much less than those of the eruption phase.Numerical magnetohydrodynamic (MHD) simulations of the coronal evolution driven by photospheric motions up to eruptions have been used to explain the slow-rise phase,but their bottom driving speeds are much larger than realistic photospheric values.Therefore,it remains an open question how the excessively fast bottom driving impacts the slow-rise phase.Here we modeled the slow-rise phase before eruption initiated from a continuously sheared magnetic arcade.In particular,we performed a series of experiments with the bottom driving speed unprecedentedly approaching the photospheric value of around 1 km s^(-1).The simulations confirmed that the slowrise phase is an ideal MHD process,i.e.,a manifestation of the growing expansion of the sheared arcade in the process of approaching a fully open field state.The overlying field line above the core flux has a slow-rise speed modulated by the driving speed’s magnitude but is always over an order of magnitude larger than the driving speed.The core field also expands with speed much higher than the driving speed but much lower than that of the overlying field.By incrementally reducing the bottom-driving speed to realistic photospheric values,we anticipate better matches between the simulated slow-rise speeds and some observed ones.展开更多
Recent observations have demonstrated the capability of mapping the solar coronal magnetic field using the technique of coronal seismology based on the ubiquitous propagating Alfvénic/kink waves through imaging s...Recent observations have demonstrated the capability of mapping the solar coronal magnetic field using the technique of coronal seismology based on the ubiquitous propagating Alfvénic/kink waves through imaging spectroscopy.We established a magnetohydrodynamic model of a gravitationally stratified open magnetic flux tube,exciting kink waves propagating upwards along the tube.Forward modeling was performed to synthesize the Fe XIII 1074.7 and 1079.8 nm spectral line profiles,which were then used to determine the wave phase speed,plasma density,and magnetic field with seismology method.A comparison between the seismologically inferred results and the corresponding input values verifies the reliability of the seismology method.In addition,we also identified some factors that could lead to errors during magnetic field measurements.Our results may serve as a valuable reference for current and future coronal magnetic field measurements based on observations of propagating kink waves.展开更多
The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classificatio...The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classification called the dual stream Convolutional Neural Network with Attention Mechanism(DSCNN-AM).The network consists of two parallel streams each processing different input data allowing for joint processing of spatial and temporal information while classifying sunspots.It takes in the white light images as well as the corresponding magnetic images that reveal both the optical and magnetic features of sunspots.The extracted features are then fused and processed by fully connected layers to perform detection and classification.The attention mechanism is further integrated to address the“edge dimming”problem which improves the model’s ability to handle sunspots near the edge of the solar disk.The network is trained and tested on the SOLAR-STORM1 data set.The results demonstrate that the DSCNN-AM achieves superior performance compared to existing methods,with a total accuracy exceeding 90%.展开更多
Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidate...Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidates for the dynamics,energy transfer,and anomalous temperature of the solar corona.In this paper,analysis is conducted on intensity and temperature fluctuations along the active region coronal loop(NOAA AR 13599)near solar flares.The intensity and temperature as functions of time and distance along the loop are extracted using images captured by the Atmospheric Imaging Assembly(AIA)instrument onboard the Solar Dynamics Observatory(SDO)space telescope.To observe and comprehend the causes of intensity and temperature fluctuations,after conducting initial processing,and applying spatial and temporal frequency filters to data,enhanced distance-time maps of these variables are drawn.The space-time maps of intensities show standing oscillations at wavelengths of 171,193,and 211A with greater precision and clarity than earlier findings.The amplitude of these standing oscillations(waves)decreases and increases over time.The average values of the oscillation period,damping time,damping quality,projected wavelength,and projected phase speed of standing intensity oscillations are in the range of 15-18 minutes,24-31 minutes,1.46″-2″,132″-134″,and 81-100 km s^(-1),respectively.Also,the differential emission measure peak temperature values along the loop are found in the range of 0.51-3.98 MK,using six AIA passbands,including 94,131,171,193,211,and 335?.Based on the values of oscillation periods,phase speeds,damping time,and damping quality,it is inferred that the fluctuations in intensity are related to standing slow magneto-acoustic waves with weak damping.展开更多
Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentatio...Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentation and assimilation of historical observational data timelines also play a significant role in understanding the patterns of solar magnetic field variation.Within the realm of astronomical data processing,super-resolution(SR)reconstruction refers to the process of using a substantial corpus of training data to learn the nonlinear mapping between low-resolution(LR)and high-resolution(HR)images,thereby achieving higherresolution astronomical images.This paper is an application study in high-dimensional nonlinear regression.Deep learning models were employed to perform SR modeling on SOHO/MDI magnetograms and SDO/HMI magnetograms,thus reliably achieving resolution enhancement of full-disk SOHO/MDI magnetograms and enhancing the image resolution to obtain more detailed information.For this study,a data set comprising 9717pairs of data from 2010 April to 2011 February was used as the training set,1332 pairs from 2011 March were used as the validation set and 1034 pairs from 2011 April were used as the test set.After data preprocessing,we randomly cropped 128×128 sub-images as the LR cases from the full-disk MDI magnetograms,and the corresponding 512×512 sub-images as HR ones from the HMI full-disk magnetograms for model training.The tests conducted have shown that the study successfully produced reliable 4×SR reconstruction of full-disk MDI magnetograms.The MESR model's results(0.911)were highly correlated with the target HMI magnetographs as indicated by the correlation coefficient values.Furthermore,the method achieved the best PSNR,SSIM,MAE and RMSE values,indicating that the MESR model can effectively reconstruct magnetograms.展开更多
Chang'e-6 Collects Samples from Moon's Far Side China's Chang'e-6 mission collected 1.9 kilograms of samples from the far side of the moon,the China National Space Administration(CNSA)announced on June...Chang'e-6 Collects Samples from Moon's Far Side China's Chang'e-6 mission collected 1.9 kilograms of samples from the far side of the moon,the China National Space Administration(CNSA)announced on June 28.Zhang Kejian,head of the CNSA,handed over the sample container to Ding Chibiao,vice president of the Chinese Academy of Sciences(CAS),along with the sample certificate at a ceremony held in Beijing.展开更多
基金supported by the National Natural Science Foundation of China (NSFC,Grant No.42174200)Shenzhen Science and Technology Program (grant No.RCJC20210609104422048)+1 种基金Shenzhen Key Laboratory Launching Project (No.ZDSYS20210702140800001)Guangdong Basic and Applied Basic Research Foundation(2023B1515040021)。
文摘Before solar eruptions,a short-term slow-rise phase is often observed,during which the pre-eruption structure ascends at speeds much greater than the photospheric motions but much less than those of the eruption phase.Numerical magnetohydrodynamic (MHD) simulations of the coronal evolution driven by photospheric motions up to eruptions have been used to explain the slow-rise phase,but their bottom driving speeds are much larger than realistic photospheric values.Therefore,it remains an open question how the excessively fast bottom driving impacts the slow-rise phase.Here we modeled the slow-rise phase before eruption initiated from a continuously sheared magnetic arcade.In particular,we performed a series of experiments with the bottom driving speed unprecedentedly approaching the photospheric value of around 1 km s^(-1).The simulations confirmed that the slowrise phase is an ideal MHD process,i.e.,a manifestation of the growing expansion of the sheared arcade in the process of approaching a fully open field state.The overlying field line above the core flux has a slow-rise speed modulated by the driving speed’s magnitude but is always over an order of magnitude larger than the driving speed.The core field also expands with speed much higher than the driving speed but much lower than that of the overlying field.By incrementally reducing the bottom-driving speed to realistic photospheric values,we anticipate better matches between the simulated slow-rise speeds and some observed ones.
基金supported by the National Natural Science Foundation of China (NSFC,grant No.12425301)the Strategic Priority Research Program of the Chinese Academy of Sciences (grant No.XDB0560000)+6 种基金the National Key R&D Program of China No.2022YFF0503800support from the National Natural Science Foundation of China (NSFC,grant No.12203030)supported by the C1 grant TRACEspace of Internal Funds KU Leuven and a Senior Research Project (G088021N) of the FWO Vlaanderensupport from the Flemish Government under the long-term structural Methusalem funding program,project SOUL:Stellar evolution in full glory,grant METH/24/012 at KU Leuvensubsidized by the Belgian Federal Science Policy Office through the contract B2/223/P1/CLOSE-UPfunding under the Horizon Europe program of the European Union under grant agreement (No.101131534)support by an FWO (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen)postdoctoral fellowship (1273221N)
文摘Recent observations have demonstrated the capability of mapping the solar coronal magnetic field using the technique of coronal seismology based on the ubiquitous propagating Alfvénic/kink waves through imaging spectroscopy.We established a magnetohydrodynamic model of a gravitationally stratified open magnetic flux tube,exciting kink waves propagating upwards along the tube.Forward modeling was performed to synthesize the Fe XIII 1074.7 and 1079.8 nm spectral line profiles,which were then used to determine the wave phase speed,plasma density,and magnetic field with seismology method.A comparison between the seismologically inferred results and the corresponding input values verifies the reliability of the seismology method.In addition,we also identified some factors that could lead to errors during magnetic field measurements.Our results may serve as a valuable reference for current and future coronal magnetic field measurements based on observations of propagating kink waves.
文摘The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting space weather events.This paper proposes a novel method for sunspot group detection and classification called the dual stream Convolutional Neural Network with Attention Mechanism(DSCNN-AM).The network consists of two parallel streams each processing different input data allowing for joint processing of spatial and temporal information while classifying sunspots.It takes in the white light images as well as the corresponding magnetic images that reveal both the optical and magnetic features of sunspots.The extracted features are then fused and processed by fully connected layers to perform detection and classification.The attention mechanism is further integrated to address the“edge dimming”problem which improves the model’s ability to handle sunspots near the edge of the solar disk.The network is trained and tested on the SOLAR-STORM1 data set.The results demonstrate that the DSCNN-AM achieves superior performance compared to existing methods,with a total accuracy exceeding 90%.
文摘Intensity fluctuations are frequently observed in different regions and structures of the solar corona.These fluctuations may be caused by magneto-hydrodynamic(MHD)waves in coronal plasma.MHD waves are prime candidates for the dynamics,energy transfer,and anomalous temperature of the solar corona.In this paper,analysis is conducted on intensity and temperature fluctuations along the active region coronal loop(NOAA AR 13599)near solar flares.The intensity and temperature as functions of time and distance along the loop are extracted using images captured by the Atmospheric Imaging Assembly(AIA)instrument onboard the Solar Dynamics Observatory(SDO)space telescope.To observe and comprehend the causes of intensity and temperature fluctuations,after conducting initial processing,and applying spatial and temporal frequency filters to data,enhanced distance-time maps of these variables are drawn.The space-time maps of intensities show standing oscillations at wavelengths of 171,193,and 211A with greater precision and clarity than earlier findings.The amplitude of these standing oscillations(waves)decreases and increases over time.The average values of the oscillation period,damping time,damping quality,projected wavelength,and projected phase speed of standing intensity oscillations are in the range of 15-18 minutes,24-31 minutes,1.46″-2″,132″-134″,and 81-100 km s^(-1),respectively.Also,the differential emission measure peak temperature values along the loop are found in the range of 0.51-3.98 MK,using six AIA passbands,including 94,131,171,193,211,and 335?.Based on the values of oscillation periods,phase speeds,damping time,and damping quality,it is inferred that the fluctuations in intensity are related to standing slow magneto-acoustic waves with weak damping.
基金funded by the National Natural Science Foundation of China(NSFC,Grant No.12003068)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009。
文摘Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentation and assimilation of historical observational data timelines also play a significant role in understanding the patterns of solar magnetic field variation.Within the realm of astronomical data processing,super-resolution(SR)reconstruction refers to the process of using a substantial corpus of training data to learn the nonlinear mapping between low-resolution(LR)and high-resolution(HR)images,thereby achieving higherresolution astronomical images.This paper is an application study in high-dimensional nonlinear regression.Deep learning models were employed to perform SR modeling on SOHO/MDI magnetograms and SDO/HMI magnetograms,thus reliably achieving resolution enhancement of full-disk SOHO/MDI magnetograms and enhancing the image resolution to obtain more detailed information.For this study,a data set comprising 9717pairs of data from 2010 April to 2011 February was used as the training set,1332 pairs from 2011 March were used as the validation set and 1034 pairs from 2011 April were used as the test set.After data preprocessing,we randomly cropped 128×128 sub-images as the LR cases from the full-disk MDI magnetograms,and the corresponding 512×512 sub-images as HR ones from the HMI full-disk magnetograms for model training.The tests conducted have shown that the study successfully produced reliable 4×SR reconstruction of full-disk MDI magnetograms.The MESR model's results(0.911)were highly correlated with the target HMI magnetographs as indicated by the correlation coefficient values.Furthermore,the method achieved the best PSNR,SSIM,MAE and RMSE values,indicating that the MESR model can effectively reconstruct magnetograms.
文摘Chang'e-6 Collects Samples from Moon's Far Side China's Chang'e-6 mission collected 1.9 kilograms of samples from the far side of the moon,the China National Space Administration(CNSA)announced on June 28.Zhang Kejian,head of the CNSA,handed over the sample container to Ding Chibiao,vice president of the Chinese Academy of Sciences(CAS),along with the sample certificate at a ceremony held in Beijing.